
MIPS32™ 4KEm™ Processor Core Datasheet November 8, 2002

It is a
re is
tegrate
es, and
er
umer,
ons.

ed
MT)

MU.

ns,
very

nized as
l word
caches
nslated.

 data
 data
The MIPS32™ 4KEm™ core from MIPS® Technologies is a member of the MIPS32 4KE™ processor core family.
high-performance, low-power, 32-bit MIPS RISC core designed for custom system-on-silicon applications. The co
designed for semiconductor manufacturing companies, ASIC developers, and system OEMs who want to rapidly in
their own custom logic and peripherals with a high-performance RISC processor. It is highly portable across process
can be easily integrated into full system-on-silicon designs, allowing developers to focus their attention on end-us
products. The 4KEm core is ideally positioned to support new products for emerging segments of the digital cons
network, systems, and information management markets, enabling new tailored solutions for embedded applicati

The 4KEm core implements the MIPS32 Release 2 Architecture with the MIPS16e™ ASE, and the 32-bit privileg
resource architecture. The Memory Management Unit (MMU) consists of a simple, Fixed Mapping Translation (F
mechanism for applications that do not require the full capabilities of a Translation Lookaside Buffer- (TLB-) based M

The synthesizable 4KEm core includes a Multiply/Divide Unit (MDU) that implements single cycle MAC instructio
which enable DSP algorithms to be performed efficiently. It allows 32-bit x 16-bit MAC instructions to be issued e
cycle, while a 32-bit x 32-bit MAC instruction can be issued every 2 cycles.

Instruction and data caches are fully configurable from 0 - 64 Kbytes in size. In addition, each cache can be orga
direct-mapped or 2-way, 3-way, or 4-way set associative. Load and fetch cache misses only block until the critica
becomes available. The pipeline resumes execution while the remaining words are being written to the cache. Both
are virtually indexed and physically tagged to allow them to be accessed in the same clock that the address is tra

An optional Enhanced JTAG (EJTAG) block allows for single-stepping of the processor as well as instruction and
virtual address/value breakpoints. Additionally, real-time tracing of instruction program counter, data address, and
values can be supported.

Figure 1 shows a block diagram of the 4KEm core. The core is divided intorequired andoptional blocks as shown.

Figure 1 4KEm Core Block Diagram

System
Coprocessor

MDU

FMT

MMU

D-cache

BIU

TAP

EJTAG

 Power
Mgmt

I-cache Off-Chip
Debug I/F

Fixed/Required Optional

 Execution
Core

(RF/ALU/Shift)

T
hi

n
I/F

O
n-

C
hi

p
B

us
(e

s)

Trace

Off/On-Chip
Trace I/F

CP2

UDI

On-Chip
Coprocessor 2

Cache
Controller
MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00 Document Number: MD00112

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

s

s

t

s

r

he

to
on.
Features

• 5-stage pipeline

• 32-bit Address and Data Paths

• MIPS32-Compatible Instruction Set

– Multiply-Accumulate and Multiply-Subtract
Instructions (MADD, MADDU, MSUB, MSUBU)

– Targeted Multiply Instruction (MUL)
– Zero/One Detect Instructions (CLZ, CLO)
– Wait Instruction (WAIT)
– Conditional Move Instructions (MOVZ, MOVN)
– Prefetch Instruction (PREF)

• MIPS32 Enhanced Architecture (Release 2) Features

– Vectored interrupts and support for external interrupt
controller

– Programmable exception vector base
– Atomic interrupt enable/disable
– GPR shadow registers (optionally, one or three

additional shadows can be added to minimize latency
for interrupt handlers)

– Bit field manipulation instructions

• MIPS16e™ Code Compression

– 16 bit encodings of 32 bit instructions to improve code
density

– Special PC-relative instructions for efficient loading of
addresses and constants

– SAVE & RESTORE macro instructions for setting up
and tearing down stack frames within subroutines

– Improved support for handling 8 and 16 bit datatypes

• Programmable Cache Sizes

– Individually configurable instruction and data caches
– Sizes from 0 - 64KB
– Direct Mapped, 2-, 3-, or 4-Way Set Associative
– Loads block only until critical word is available
– Write-back and write-through support
– 16-byte cache line size
– Virtually indexed, physically tagged
– Cache line locking support
– Non-blocking prefetches

• Scratchpad RAM Support

– Can optionally replace 1 way of the I- and/or D-cache
with a fast scratchpad RAM

– Independent external pin interfaces for I- and D-
scratchpads

– 20 index address bits allow access of arrays up to 1MB
– Interface allows back-stalling the core

• MIPS32 Privileged Resource Architecture

– Count/Compare registers for real-time timer interrupts
– I and D watch registers for SW breakpoints

• Memory Management Unit

– Simple Fixed Mapping Translation (FMT) mechanism

• Simple Bus Interface Unit (BIU)

– All I/O’s fully registered
– Separate unidirectional 32-bit address and data buse
– Two 16-byte collapsing write buffers
– Designed to allow easy conversion to other bus

protocols

• CorExtend™ User Defined Instruction Set Extension
(available in 4KEm Pro™ core)

– Allows user to define and add instructions to the core a
build time

– Maintains full MIPS32 compatibility
– Supported by industry standard development tools
– Single or multi-cycle instructions
– Separately licensed; a core with this feature is known a

the 4KEm Pro™ core

• Multiply/Divide Unit

– Maximum issue rate of one 32x16 multiply per clock
– Maximum issue rate of one 32x32 multiply every othe

clock
– Early-in iterative divide. Minimum 11 and maximum 34

clock latency (dividend (rs) sign extension-dependent)

• Coprocessor 2 interface

– 32 bit interface to an external coprocessor

• Power Control

– Minimum frequency: 0 MHz
– Power-down mode (triggered by WAIT instruction)
– Support for software-controlled clock divider
– Support for extensive use of local gated clocks

• EJTAG Debug

– Support for single stepping
– Virtual instruction and data address/value breakpoints
– PC and data tracing
– TAP controller is chainable for multi-CPU debug
– Cross-CPU breakpoint support

• Testability

– Full scan design achieves test coverage in excess of
99% (dependent on library and configuration options)

– Optional memory BIST for internal SRAM arrays

Architecture Overview

The 4KEm core contains both required and optional
blocks. Required blocks are the lightly shaded areas of t
block diagram inFigure 1 and must be implemented to
remain MIPS-compliant. Optional blocks can be added
the 4KEm core based on the needs of the implementati
2 MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

s.

or

al
The required blocks are as follows:

• Execution Unit

• Multiply/Divide Unit (MDU)

• System Control Coprocessor (CP0)

• Memory Management Unit (MMU)

• Fixed Mapping Translation (FMT)

• Cache Controllers

• Bus Interface Unit (BIU)

• Power Management

Optional blocks include:

• Instruction Cache

• Data Cache

• Scratchpad RAM interface

• Coprocessor 2 interface

• CorExtend™ User Defined Instruction (UDI) support

• MIPS16e support

• Enhanced JTAG (EJTAG) Controller

The section entitled "4KEm Core Required Logic Blocks"
on page 4 discusses the required blocks. The section
entitled "4KEm Core Optional Logic Blocks" on page 11
discusses the optional blocks.

Pipeline Flow

The 4KEm core implements a 5-stage pipeline with
performance similar to the R3000 pipeline. The pipeline
allows the processor to achieve high frequency while
minimizing device complexity, reducing both cost and
power consumption.

The 4KEm core pipeline consists of five stages:

• Instruction (I Stage)

• Execution (E Stage)

• Memory (M Stage)

• Align (A Stage)

• Writeback (W stage)

The 4KEm core implements a bypass mechanism that
allows the result of an operation to be forwarded directly to
the instruction that needs it without having to write the
result to the register and then read it back.

Figure 2 shows a timing diagram of the 4KEm core
pipeline.

Figure 2 4KEm Core Pipeline

I Stage: Instruction Fetch

During the Instruction fetch stage:

• An instruction is fetched from instruction cache.

• MIPS16e instructions are expanded into MIPS32-like
instructions

E Stage: Execution

During the Execution stage:

• Operands are fetched from register file.

• The arithmetic logic unit (ALU) begins the arithmetic
or logical operation for register-to-register instruction

• The ALU calculates the data virtual address for load
and store instructions.

• The ALU determines whether the branch condition is
true and calculates the virtual branch target address f
branch instructions.

• Instruction logic selects an instruction address.

• All multiply and divide operations begin in this stage.

M Stage: Memory Fetch

During the Memory fetch stage:

• The arithmetic ALU operation completes.

• The data cache access and the data virtual-to-physic
address translation are performed for load and store
instructions.

• Data cache look-up is performed and a hit/miss
determination is made.

I E M A W

I-A1

RegRd

I Dec

ALU Op

Align RegWD-AC

Bypass
Bypass

Mul-16x16, 32x16 RegW

Bypass

Acc

Mul-32x32 RegWAcc

I-A2

Bypass

Div RegWAcc

I-Cache
D-Cache
MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00 3

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

e
e

of
to

ir

ic.

he

d

e

• A 16x16 or 32x16 multiply calculation completes.

• A 32x32 multiply operation stalls the MDU pipeline
for one clock in the M stage.

• A divide operation stalls the MDU pipeline for a
maximum of 34 clocks in the M stage. Early-in sign
extension detection on the dividend will skip 7, 15, or
23 stall clocks.

A Stage: Align

During the Align stage:

• Load data is aligned to its word boundary.

• A 16x16 or 32x16 multiply operation performs the
carry-propagate-add. The actual register writeback is
performed in the W stage.

• A MUL operation makes the result available for
writeback. The actual register writeback is performed
in the W stage.

W Stage: Writeback

During the Writeback stage:

• For register-to-register or load instructions, the
instruction result is written back to the register file.

4KEm Core Required Logic Blocks

The 4KEm core consists of the following required logic
blocks, shown inFigure 1. These logic blocks are defined
in the following subsections:

• Execution Unit

• Multiply/Divide Unit (MDU)

• System Control Coprocessor (CP0)

• Memory Management Unit (MMU)

• Fixed Mapping Translation (FMT)

• Cache Controller

• Bus Interface Unit (BIU)

• Power Management

Execution Unit

The 4KEm core execution unit implements a load/store
architecture with single-cycle ALU operations (logical,
shift, add, subtract) and an autonomous multiply/divide
unit. The 4KEm core contains thirty-two 32-bit general-
purpose registers used for integer operations and address

calculation. Optionally, one or three additional register fil
shadow sets (each containing thirty-two registers) can b
added to minimize context switching overhead during
interrupt/exception processing. The register file consists
two read ports and one write port and is fully bypassed
minimize operation latency in the pipeline.

 The execution unit includes:

• 32-bit adder used for calculating the data address

• Address unit for calculating the next instruction
address

• Logic for branch determination and branch target
address calculation

• Load aligner

• Bypass multiplexers used to avoid stalls when
executing instructions streams where data producing
instructions are followed closely by consumers of the
results

• Leading Zero/One detect unit for implementing the
CLZ and CLO instructions

• Arithmetic Logic Unit (ALU) for performing bitwise
logical operations

• Shifter & Store Aligner

Multiply/Divide Unit (MDU)

The 4KEm core includes a multiply/divide unit (MDU) that
contains a separate pipeline for multiply and divide
operations. This pipeline operates in parallel with the
integer unit (IU) pipeline and does not stall when the IU
pipeline stalls. This setup allows long-running MDU
operations, such as a divide, to be partially masked by
system stalls and/or other integer unit instructions.

The MDU consists of a 32x16 booth recoded multiplier,
result/accumulation registers (HI and LO), a divide state
machine, and the necessary multiplexers and control log
The first number shown (‘32’ of 32x16) represents thers
operand. The second number (‘16’ of 32x16) represents t
rt operand. The 4KEm core only checks the value of the
latter (rt) operand to determine how many times the
operation must pass through the multiplier. The 16x16 an
32x16 operations pass through the multiplier once. A
32x32 operation passes through the multiplier twice.

The MDU supports execution of one 16x16 or 32x16
multiply operation every clock cycle; 32x32 multiply
operations can be issued every other clock cycle.
Appropriate interlocks are implemented to stall the
issuance of back-to-back 32x32 multiply operations. Th
4 MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

e
s

d

l-

),

r

multiply operand size is automatically determined by logic
built into the MDU.

Divide operations are implemented with a simple 1 bit per
clock iterative algorithm. An early-in detection checks the
sign extension of the dividend (rs) operand. If rs is 8 bits
wide, 23 iterations are skipped. For a 16-bit-wide rs, 15
iterations are skipped, and for a 24-bit-wide rs, 7 iterations
are skipped. Any attempt to issue a subsequent MDU
instruction while a divide is still active causes an IU
pipeline stall until the divide operation is completed.

Table 1 lists the repeat rate (peak issue rate of cycles until
the operation can be reissued) and latency (number of
cycles until a result is available) for the 4KEm core
multiply and divide instructions. The approximate latency
and repeat rates are listed in terms of pipeline clocks. For a
more detailed discussion of latencies and repeat rates, refer
to Chapter 2 of theMIPS32 4KE™ Processor Core Family
Software User’s Manual.

The MIPS architecture defines that the result of a multiply
or divide operation be placed in the HI and LO registers.
Using the Move-From-HI (MFHI) and Move-From-LO
(MFLO) instructions, these values can be transferred to the
general-purpose register file.

In addition to the HI/LO targeted operations, the MIPS32
architecture also defines a multiply instruction, MUL,
which places the least significant results in the primary
register file instead of the HI/LO register pair. By avoiding
the explicit MFLO instruction, required when using the LO
register, and by supporting multiple destination registers,

the throughput of multiply-intensive operations is
increased.

Two other instructions, multiply-add (MADD) and
multiply-subtract (MSUB), are used to perform the
multiply-accumulate and multiply-subtract operations. Th
MADD instruction multiplies two numbers and then add
the product to the current contents of the HI and LO
registers. Similarly, the MSUB instruction multiplies two
operands and then subtracts the product from the HI an
LO registers. The MADD and MSUB operations are
commonly used in DSP algorithms.

System Control Coprocessor (CP0)

In the MIPS architecture, CP0 is responsible for the virtua
to-physical address translation and cache protocols, the
exception control system, the processor’s diagnostics
capability, the operating modes (kernel, user, and debug
and whether interrupts are enabled or disabled.
Configuration information, such as cache size and set
associativity, is also available by accessing the CP0
registers, listed in Table 2.

Table 1 4KEm Core High-Performance Integer Multiply/
Divide Unit Latencies and Repeat Rates

Opcode

Operand
Size

(mul rt)
(div rs) Latency

Repeat
Rate

MULT/MULTU,
MADD/MADDU,
MSUB/MSUBU

16 bits 1 1

32 bits 2 2

MUL
16 bits 2 1

32 bits 3 2

DIV/DIVU

8 bits 12 11

16 bits 19 18

24 bits 26 25

32 bits 33 32

Table 2 Coprocessor 0 Registers in Numerical Orde

Register
Number

Register
Name Function

0-6 Reserved Reserved in the 4KEm core.

7 HWREna
Enables access via the RDHWR
instruction to selected hardware
registers.

8 BadVAddr1
Reports the address for the most
recent address-related exception.

9 Count1 Processor cycle count.

10 Reserved Reserved in the 4KEm core.

11 Compare1 Timer interrupt control.

12 Status1 Processor status and control.

12 IntCtl1 Interrupt system status and control.

12 SRSCtl1
Shadow register set status and
control.

12 SRSMap1
Provides mapping from vectored
interrupt to a shadow set.

13 Cause1 Cause of last general exception.

14 EPC1 Program counter at last exception.
MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00 5

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

Coprocessor 0 also contains the logic for identifying and
managing exceptions. Exceptions can be caused by a
variety of sources, including boundary cases in data,

external events, or program errors. Table 3 shows the
exception types in order of priority.

15 PRId
Processor identification and
revision.

15 EBASE Exception vector base register.

16 Config Configuration register.

16 Config1 Configuration register 1.

16 Config2 Configuration register 2.

16 Config3 Configuration register 3.

17 LLAddr Load linked address.

18 WatchLo1 Low-order watchpoint address.

19 WatchHi1 High-order watchpoint address.

20-22 Reserved Reserved in the 4KEm core.

23 Debug2
Debug control and exception
status.

23
Trace
Control2

PC/Data trace control register.

23
Trace
Control22

Additional PC/Data trace control.

23
User Trace
Data2

User Trace control register.

23 TraceBPC2 Trace breakpoint control.

24 DEPC2 Program counter at last debug
exception.

25 Reserved Reserved in the 4KEm core.

26 ErrCtl
Used for software testing of cache
arrays.

27 Reserved Reserved in the 4KEm core.

28
TagLo/
DataLo

Low-order portion of cache tag
interface.

29 Reserved Reserved in the 4KEm core.

30 ErrorEPC1 Program counter at last error.

31 DESAVE2 Debug handler scratchpad register.

1. Registers used in exception processing.

2. Registers used during debug.

Table 2 Coprocessor 0 Registers in Numerical Order

Register
Number

Register
Name Function Table 3 4KEm Core Exception Types

Exception Description

Reset
Assertion ofSI_ColdResetor SI_Reset
signals.

DSS EJTAG Debug Single Step.

DINT

EJTAG Debug Interrupt. Caused by the
assertion of the externalEJ_DINT
input, or by setting the EjtagBrk bit in
the ECR register.

NMI Assertion ofEB_NMI signal.

Interrupt
Assertion of unmasked hardware or
software interrupt signal.

Deferred Watch
Deferred Watch (unmasked by K|DM-
>!(K|DM) transition).

DIB
EJTAG debug hardware instruction
break matched.

WATCH
A reference to an address in one of the
watch registers (fetch).

AdEL
Fetch address alignment error.

Fetch reference to protected address.

IBE Instruction fetch bus error.

DBp
EJTAG Breakpoint (execution of
SDBBP instruction).

Sys Execution of SYSCALL instruction.

Bp Execution of BREAK instruction.

RI Execution of a Reserved Instruction.

CpU
Execution of a coprocessor instruction
for a coprocessor that is not enabled.

Ov
Execution of an arithmetic instruction
that overflowed.

Tr
Execution of a trap (when trap
condition is true).

DDBL / DDBS
EJTAG Data Address Break (address
only) or EJTAG Data Value Break on
Store (address+value).

WATCH
A reference to an address in one of the
watch registers (data).

AdEL
Load address alignment error.

Load reference to protected address.
6 MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

s
ity
or

n

ne
st

e
nd
rk

le,

ter

as

to

r,

e

h

Interrupt Handling

The 4KEm core includes support for six hardware interrupt
pins, two software interrupts, and a timer interrupt. These
interrupts can be used in any of three interrupt modes, as
defined by Release 2 of the MIPS32 Architecture:

• Interrupt compatibility mode, which acts identically to
that in an implementation of Release 1 of the
Architecture.

• Vectored Interrupt (VI) mode, which adds the ability to
prioritize and vector interrupts to a handler dedicated
to that interrupt, and to assign a GPR shadow set for
use during interrupt processing. The presence of this
mode is denoted by the VInt bit in theConfig3register.
This mode is architecturally optional; but it is always
present on the 4KEm core, so the VInt bit will always
read as a 1 for the 4KEm core.

• External Interrupt Controller (EIC) mode, which
redefines the way in which interrupts are handled to
provide full support for an external interrupt controller
handling prioritization and vectoring of interrupts. This
presence of this mode denoted by the VEIC bit in the
Config3register. Again, this mode is architecturally
optional. On the 4KEm core, the VEIC bit is set
externally by the static input,SI_EICPresent, to allow
system logic to indicate the presence of an external
interrupt controller.

The reset state of the processor is to interrupt compatibility
mode such that a processor supporting Release 2 of the
Architecture, like the 4KEm core, is fully compatible with
implementations of Release 1 of the Architecture.

VI or EIC interrupt modes can be combined with the
optional shadow registers to specify which shadow set
should be used upon entry to a particular vector. The
shadow registers further improve interrupt latency by
avoiding the need to save context when invoking an
interrupt handler.

GPR Shadow Registers

Release 2 of the MIPS32 Architecture optionally remove
the need to save and restore GPRs on entry to high prior
interrupts or exceptions, and to provide specified process
modes with the same capability. This is done by
introducing multiple copies of the GPRs, calledshadow
sets, and allowing privileged software to associate a
shadow set with entry to kernel mode via an interrupt
vector or exception. The normal GPRs are logically
considered shadow set zero.

The number of GPR shadow sets is a build-time option o
the 4KEm core. Although Release 2 of the Architecture
defines a maximum of 16 shadow sets, the core allows o
(the normal GPRs), two, or four shadow sets. The highe
number actually implemented is indicated by the
SRSCtlHSSfield. If this field is zero, only the normal GPRs
are implemented.

Shadow sets are new copies of the GPRs that can be
substituted for the normal GPRs on entry to kernel mod
via an interrupt or exception. Once a shadow set is bou
to a kernel mode entry condition, reference to GPRs wo
exactly as one would expect, but they are redirected to
registers that are dedicated to that condition. Privileged
software may need to reference all GPRs in the register fi
even specific shadow registers that are not visible in the
current mode. The RDPGPR and WRPGPR instructions
are used for this purpose. The CSS field of theSRSCtl
register provides the number of the current shadow regis
set, and the PSS field of theSRSCtl register provides the
number of the previous shadow register set (that which w
current before the last exception or interrupt occurred).

If the processor is operating in VI interrupt mode, binding
of a vectored interrupt to a shadow set is done by writing
theSRSMap register. If the processor is operating in EIC
interrupt mode, the binding of the interrupt to a specific
shadow set is provided by the external interrupt controlle
and is configured in an implementation-dependent way.
Binding of an exception or non-vectored interrupt to a
shadow set is done by writing to the ESS field of theSRSCtl
register. When an exception or interrupt occurs, the valu
of SRSCtlCSSis copied to SRSCtlPSS, and SRSCtlCSSis set
to the value taken from the appropriate source. On an
ERET, the value of SRSCtlPSSis copied back into
SRSCtlCSSto restore the shadow set of the mode to whic
control returns.

AdES
Store address alignment error.

Store to protected address.

DBE Load or store bus error.

DDBL
EJTAG data hardware breakpoint
matched in load data compare.

Table 3 4KEm Core Exception Types (Continued)

Exception Description
MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00 7

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

.

the

e

n,

-

Modes of Operation

The 4KEm core supports three modes of operation: user
mode, kernel mode, and debug mode. User mode is most
often used for applications programs. Kernel mode is
typically used for handling exceptions and operating
system kernel functions, including CP0 management and I/
O device accesses. An additional Debug mode is used
during system bring-up and software development. Refer to
the EJTAG section for more information on debug mode.

Figure 3 4KEm Core Virtual Address Map

Memory Management Unit (MMU)

The 4KEm core contains an MMU that interfaces between
the execution unit and the cache controller. The 4KEm core
provides a simple Fixed Mapping Translation (FMT)
mechanism that is smaller and simpler than a full

Translation Lookaside Buffer (TLB) found in other MIPS
cores, like the MIPS32 4KEc™ core. Like a TLB, the FMT
performs virtual-to-physical address translation and
provides attributes for the different segments. Those
segments that are unmapped in a TLB implementation
(kseg0 and kseg1) are translated identically by the FMT

Figure 4shows how the FMT is implemented in the 4KEm
core.

Figure 4 Address Translation During Access

In general, the FMT also determines the cacheability of
each segment. These attributes are controlled via bits in
Config register. Table 4 shows the encoding for the K23
(bits 30:28), KU (bits 27:25), and K0 (bits 2:0) fields of the
Config register. Table 5 shows how the cacheability of th
virtual address segments is controlled by these fields.

In the 4KEm core, no translation exceptions can be take
although address errors are still possible.

kuseg

kseg0

kseg1

kseg2

kseg3

0x00000000

0x7FFFFFFF
0x80000000

0x9FFFFFFF
0xA0000000

0xBFFFFFFF
0xC0000000

0xDFFFFFFF

0xE0000000

0xF1FFFFFF

Kernel virtual address space

Unmapped, 512 MB

Kernel virtual address space

Uncached

Unmapped, 512 MB

Kernel virtual address space

User virtual address space

1. This space is mapped to memory in user or kernel mode,
and by the EJTAG module in debug mode.

0xFF200000
0xFF3FFFFF
0xFF400000

0xFFFFFFFF

Memory/EJTAG1

Fixed Mapped, 2048 MB

Fixed Mapped, 512 MB

Fixed Mapped

Fixed Mapped

Table 4 Cache Coherency Attributes

Config Register Fields
K23, KU, and K0 Cache Coherency Attribute

0*
Cacheable, noncoherent, write-
through, no write-allocate

1*
Cacheable, noncoherent, write-
through, write-allocate

3, 4*, 5*, 6*
Cacheable, noncoherent, write-
back, write-allocate

2, 7* Uncached

*2 and 3 are the required MIPS32 mappings for uncached and cache
able references, other values may have different meanings in other
MIPS32 processors

Instruction
Address
Calculator

FMT

Data
Address
Calculator

Comparator

Comparator

Instruction
Cache
Tag RAM

Data
Cache
RAM

Virtual Address

Virtual Address

Instruction
Hit/Miss

Data
Hit/Miss
8 MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

e

es

e.
r
th

lock
l

.
or

e.
r

n
in
The FMT performs a simple translation to map from virtual
addresses to physical addresses. This mapping is shown in
Figure 5.

Figure 5 FMT Memory Map (ERL=0) in the 4KEm Core

When ERL=1, useg and kuseg become unmapped (virtual
address is identical to the physical address) and uncached.

This behavior is the same as if there was a TLB. This
mapping is shown inFigure 6.

Figure 6 FMT Memory Map (ERL=1) in the 4KEm Cor

Cache Controllers

The 4KEm core instruction and data cache controllers
support caches of various sizes, organizations, and set-
associativity. For example, the data cache can be 2 Kbyt
in size and 2-way set associative, while the instruction
cache can be 8 Kbytes in size and 4-way set associativ
Each cache can each be accessed in a single processo
cycle. In addition, each cache has its own 32-bit data pa
and both caches can be accessed in the same pipeline c
cycle. Refer to the section entitled "4KEm Core Optiona
Logic Blocks" on page 11 for more information on
instruction and data cache organization.

The cache controllers also have built-in support for
replacing one way of the cache with a scratchpad RAM
See the section entitled "Scratchpad RAM" on page 13 f
more information on scratchpad RAMs.

Bus Interface (BIU)

The Bus Interface Unit (BIU) controls the external
interface signals. Additionally, it contains the
implementation of the 32-byte collapsing write buffer. The
purpose of this buffer is to store and combine write
transactions before issuing them at the external interfac
When using the write-through cache policy, the write buffe
significantly reduces the number of write transactions o
the external interface and reduces the amount of stalling

Table 5 Cacheability of Segments with Fixed Mapping
Translation

Segment

Virtual
Address
Range Cacheability

useg/kuseg
0x0000_0000-
0x7FFF_FFFF

Controlled by the KU field
(bits 27:25) of the Config
register. See Table 4 for
mapping. This segment is
always uncached when
ERL = 1.

kseg0
0x8000_0000-
0x9FFF_FFFF

Controlled by the K0 field
(bits 2:0) of the Config
register. See Table 4 for
mapping.

kseg1
0xA000_0000-
0xBFFF_FFFF

Always uncacheable.

kseg2
0xC000_0000-
0xDFFF_FFFF

Controlled by the K23 field
(bits 30:28) of the Config
register. See Table 4 for
mapping.

kseg3 0xE000_0000-
0xFFFF_FFFF

Controlled by the K23 field
(bits 30:28) of the Config
register. See Table 4 for
mapping.

useg/kuseg

kseg0

kseg3

kseg2

kseg1

Virtual Address

0x8000_0000

0x0000_0000

0xA000_0000

0xC000_0000

0xE000_0000

useg/kuseg

kseg3

kseg2

Physical Address

0x0000_0000

0xC000_0000

0xE000_0000

0x2000_0000

kseg0/kseg1

0x4000_0000

reserved

useg/kuseg

kseg0

kseg3

kseg2

kseg1

Virtual Address

useg/kuseg

kseg3

kseg2

Physical Address

kseg0/kseg1

reserved

0x8000_0000

0x0000_0000

0xA000_0000

0xC000_0000

0xE000_0000

0x8000_0000

0x0000_0000

0xC000_0000

0xE000_0000
MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00 9

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

nd

te

d

en

a

r.

n
te.
 or

d

the core due to issuance of multiple writes in a short period
of time. When using a write-back cache policy, the write
buffer gathers the 4 words of dirty line writebacks.

The write buffer is organized as two 16-byte buffers. Each
buffer contains data from a single 16-byte aligned block of
memory. One buffer contains the data currently being
transferred on the external interface, while the other buffer
contains accumulating data from the core. Data from the
accumulation buffer is transferred to the external interface
buffer under one of these conditions:

• When a store is attempted from the core to a different
16-byte block than is currently being accumulated

• SYNC Instruction

• Store to an invalid merge pattern

• Any load or store to uncached memory

• A load to the line being merged

• A complete 16B block has been gathered

Note that if the data in the external interface buffer has not
been written out to memory, the core is stalled until the
memory write completes. After completion of the memory
write, accumulated buffer data can be written to the
external interface buffer.

Merge Control

The 4KEm core implements two 16-byte collapsing write
buffers that allow byte, halfword, or word writes from the
core to be accumulated in the buffer into a 16-byte value
before bursting the data onto the bus in word format. Note
that writes to uncached areas are never merged.

The 4KEm core provides two options for merge pattern
control:

• No merge

• Full merge

In No Merge mode, writes to a different word within the
same line are accumulated in the buffer. Writes to the same
word cause the previous word to be driven onto the bus.

In Full Mergemode, all combinations of writes to the same
line are collected in the buffer. Any pattern of byte enables
is possible.

SimpleBE Mode

To aid in attaching the 4KEm core to structures which
cannot easily handle arbitrary byte enable patterns, there is

a mode that generates only “simple” byte enables. Only
byte enables representing naturally aligned byte, half, a
word transactions will be generated. Legal byte enable
patterns are shown in Table 6.

The only case where a read can generate “non-simple” by
enables is on an uncached tri-byte load (LWL/LWR). In
SimpleBE mode, such reads will be converted into a wor
read on the external interface.

Writes with non-simple byte enable patterns can arise wh
a sequence of stores is processed by the merging write
buffer, or from uncached tri-byte stores (SWL/SWR). In
SimpleBE mode, these stores will be broken into two
separate write transactions, one with a valid halfword and
second with a single valid byte. This splitting is
independent of the merge pattern control in the write buffe

Hardware Reset

For historical reasons within the MIPS architecture, the
4KEm core has two types of reset input signals:SI_Reset
andSI_ColdReset.

Functionally, these two signals are ORed together withi
the core and then used to initialize critical hardware sta
Both reset signals can be asserted either synchronously
asynchronously to the core clock,SI_ClkIn, and will trigger
a Reset exception. The reset signals are active high, an
must be asserted for a minimum of 5SI_ClkIncycles. The
falling edge triggers the Reset exception. The primary
difference between the two reset signals is thatSI_Reset
sets a bit in the Status register; this bit could be used by
software to distinguish between the two reset signals, if
desired. The reset behavior is summarized in Table 7.

Table 6 Valid SimpleBE Byte Enable Patterns

EB_BE[3:0]

0001

0010

0100

1000

0011

1100

1111
10 MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

e

the

)

is

t

is

pt.

s

k

One (or both) of the reset signals must be asserted at power-
on or whenever hardware initialization of the core is
desired. A power-on reset typically occurs when the
machine is first turned on. A hard reset usually occurs when
the machine is already on and the system is rebooted.

In debug mode, EJTAG can request that a soft reset (via the
SI_Reset pin) be masked. It is system dependent whether
this functionality is supported. In normal mode, the
SI_Reset pin cannot be masked. TheSI_ColdReset pin is
never masked.

Power Management

The 4KEm core offers a number of power management
features, including low-power design, active power
management, and power-down modes of operation. The
core is a static design that supports slowing or halting the
clocks, which reduces system power consumption during
idle periods.

The 4KEm core provides two mechanisms for system-level
low power support:

• Register-controlled power management

• Instruction-controlled power management

Register-Controlled Power Management

The RP bit in the CP0 Status register provides a software
mechanism for placing the system into a low power state.
The state of the RP bit is available externally via theSI_RP
signal. The external agent then decides whether to place the
device in a low power mode, such as reducing the system
clock frequency.

Three additional bits, StatusEXL, StatusERL, and DebugDM
support the power management function by allowing the
user to change the power state if an exception or error
occurs while the 4KEm core is in a low power state.
Depending on what type of exception is taken, one of these
three bits will be asserted and reflected on theSI_EXL,
SI_ERL, orEJ_DebugM outputs. The external agent can

look at these signals and determine whether to leave th
low power state to service the exception.

The following 4 power-down signals are part of the system
interface and change state as the corresponding bits in
CP0 registers are set or cleared:

• TheSI_RPsignal represents the state of the RP bit (27
in the CP0 Status register.

• TheSI_EXLsignal represents the state of the EXL bit
(1) in the CP0 Status register.

• TheSI_ERLsignal represents the state of the ERL bit
(2) in the CP0 Status register.

• TheEJ_DebugMsignal represents the state of the DM
bit (30) in the CP0 Debug register.

Instruction-Controlled Power Management

The second mechanism for invoking power-down mode
through execution of the WAIT instruction. When the
WAIT instruction is executed, the internal clock is
suspended; however, the internal timer and some of the
input pins (SI_Int[5:0], SI_NMI, SI_Reset, and
SI_ColdReset) continue to run. Once the CPU is in
instruction-controlled power management mode, any
interrupt, NMI, or reset condition causes the CPU to exi
this mode and resume normal operation.

The 4KEm core asserts theSI_Sleepsignal, which is part of
the system interface bus, whenever the WAIT instruction
executed. The assertion ofSI_Sleepindicates that the clock
has stopped and the 4KEm core is waiting for an interru

Local clock gating

The majority of the power consumed by the 4KEm core i
in the clock tree and clocking registers. The core has
support for extensive use of local gated-clocks. Power
conscious implementors can use these gated clocks to
significantly reduce power consumption within the core.

4KEm Core Optional Logic Blocks

The 4KEm core contains several optional logic blocks
shown in the block diagram inFigure 1.

Instruction Cache

The instruction cache is an optional on-chip memory bloc
of up to 64 Kbytes. Because the instruction cache is

Table 7 4KEm Reset Types

SI_Reset SI_ColdReset Action

0 0 Normal Operation, no reset.

1 0
Reset exception; sets
Status.SR bit.

X 1 Reset exception.
MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00 11

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

ta
r
 be

h
t

in
e

t. If
ain
virtually indexed, the virtual-to-physical address
translation occurs in parallel with the cache access rather
than having to wait for the physical address translation. The
tag holds 22 bits of physical address, a valid bit, and a lock
bit. The LRU replacement bits (0-6b per set depending on
associativity) are stored in a separate array.

The instruction cache block also contains and manages the
instruction line fill buffer. Besides accumulating data to be
written to the cache, instruction fetches that reference data
in the line fill buffer are serviced either by a bypass of that
data, or data coming from the external interface. The
instruction cache control logic controls the bypass
function.

The 4KEm core supports instruction-cache locking. Cache
locking allows critical code or data segments to be locked
into the cache on a “per-line” basis, enabling the system
programmer to maximize the efficiency of the system
cache.

The cache-locking function is always available on all
instruction-cache entries. Entries can then be marked as
locked or unlocked on a per entry basis using the CACHE
instruction.

Data Cache

The data cache is an optional on-chip memory block of up
to 64 Kbytes. This virtually indexed, physically tagged
cache is protected. Because the data cache is virtually
indexed, the virtual-to-physical address translation occurs
in parallel with the cache access. The tag holds 22 bits of
physical address, a valid bit, and a lock bit. There is an
additional array holding dirty bits and LRU replacement
algorithm bits (0-6b depending on associativity) for each
set of the cache.

In addition to instruction-cache locking, the 4KEm core
also supports a data-cache locking mechanism identical to
the instruction cache. Critical data segments are locked into
the cache on a “per-line” basis. The locked contents can be
updated on a store hit, but cannot be selected for
replacement on a cache miss.

The cache-locking function is always available on all data
cache entries. Entries can then be marked as locked or
unlocked on a per-entry basis using the CACHE
instruction.

Cache Memory Configuration

The 4KEm core incorporates on-chip instruction and da
caches that can each be accessed in a single processo
cycle. Each cache has its own 32-bit data path and can
accessed in the same pipeline clock cycle.Table 8lists the
4KEm core instruction and data cache attributes.

Cache Protocols

The 4KEm core supports the following cache protocols:

• Uncached:Addresses in a memory area indicated as
uncached are not read from the cache. Stores to suc
addresses are written directly to main memory, withou
changing cache contents.

• Write-through, no write allocate: Loads and
instruction fetches first search the cache, reading ma
memory only if the desired data does not reside in th
cache. On data store operations, the cache is first
searched to see if the target address is cache residen
it is resident, the cache contents are updated, and m
memory is also written. If the cache look-up misses,
only main memory is written.

• Write-through, write allocate : Similar to above, but
stores missing in the cache will cause a cache refill.
The store data is then written to both the cache and
main memory

Table 8 4KEm Core Instruction and Data Cache
Attributes

Parameter Instruction Data

Size 0 - 64 Kbytes 0 - 64 Kbytes

Organization
1 - 4 way set
associative

1 - 4 way set
associative

Line Size 16 bytes 16 bytes

Read Unit 32 bits 32 bits

Write Policies na

write-through
with write
allocate,

write-through
without write
allocate,

write-back with
write allocate

Miss restart after
transfer of

miss word miss word

Cache Locking per line per line
12 MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

or

ce

on

rd:
e,
ta

n

re

o
s
e.

d,
n
he
if

G

r

ep

g

n

• Write-back, write allocate: Stores that miss in the
cache will cause a cache refill. Store data, however, is
only written to the cache. Caches lines that are written
by stores will be marked as dirty. If a dirty line is
selected for replacement, the cache line will be written
back to main memory.

Scratchpad RAM

The 4KEm core also supports replacing up to one way of
each cache with a scratchpad RAM. Scratchpad RAM is
accessed via independent external pin interfaces for
instruction and data scratchpads. The external block which
connects to a scratchpad interface is user-defined and can
consist of a variety of devices. The main requirement is that
it must be accessible with timing similar to an internal
cache RAM. Normally, this means that an index will be
driven one cycle, a tag will be driven the following clock,
and the scratchpad must return a hit signal and the data in
the second clock. The scratchpad can easily contain a large
RAM/ROM or memory-mapped registers. Unlike the fixed
single-cycle cache timing, however, the scratchpad
interface can also accommodate backstalling the core
pipeline if data is not available in a single clock. This
backstalling capability can be useful for operations which
require multi-cycle latency. It can also be used to enable
arbitration of external accesses to a shared scratchpad
memory.

The core’s functional interface to a scratchpad RAM is
slightly different than to a regular cache RAM. Additional
index bits allow access to a larger array, 1MB of scratchpad
RAM versus 4KB for a cache way. The core does not
automatically refill the scratchpad way and will not select
it for replacement on cache misses. Additionally, stores that
hit in the scratchpad will not generate writes to main
memory.

MIPS16e Application Specific Extension

The 4KEm core has optional support for the MIPS16e
ASE. This ASE improves code density through the use of
16-bit encodings of MIPS32 instructions plus some
MIPS16e-specific instructions. PC relative loads allow
quick access to constants. Save/Restore macro instructions
provide for single instruction stack frame setup/teardown
for efficient subroutine entry/exit. Sign- and zero-extend
instructions improve handling of 8-bit and 16-bit datatypes.

Coprocessor 2 Interface

The 4KEm core can be configured to have an interface f
an on-chip coprocessor. This coprocessor can be tightly
coupled to the processor core, allowing high performan
solutions integrating a graphics accelerator or DSP, for
example.

The coprocessor interface is extensible and standardized
MIPS cores, allowing for design reuse. The 4KEm core
supports a subset of the full coprocessor interface standa
32b data transfer, no Coprocessor 1 support, single issu
in-order data transfer to coprocessor, one out-of-order da
transfer from coprocessor.

The coprocessor interface is designed to ease integratio
with customer IP. The interface allows high-performance
communication between the core and coprocessor. The
are no late or critical signals on the interface.

CorExtend User Defined Instruction
Extensions

The optional CorExtend User Defined Instruction (UDI)
block enables the implementation of a small number of
application-specific instructions that are tightly coupled t
the core’s execution unit. The interface to the UDI block i
internal and not defined externally on the 4KEm Pro cor

Such instructions may operate on a general-purpose
register, immediate data specified by the instruction wor
or local state stored within the UDI block. The destinatio
may be a general-purpose register or local UDI state. T
operation may complete in one cycle or multiple cycles,
desired.

EJTAG Debug Support

The 4KEm core provides for an optional Enhanced JTA
(EJTAG) interface for use in the software debug of
application and kernel code. In addition to standard use
mode and kernel modes of operation, the 4KEm core
provides a Debug mode that is entered after a debug
exception (derived from a hardware breakpoint, single-st
exception, etc.) is taken and continues until a debug
exception return (DERET) instruction is executed. Durin
this time, the processor executes the debug exception
handler routine.

Refer to the section called "External Interface Signals" o
page 21 for a list of EJTAG interface signals.
MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00 13

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

e

ta
or

o

and
ck.

h
e,

r
s
al
rs

nal
The EJTAG interface operates through the Test Access Port
(TAP), a serial communication port used for transferring
test data in and out of the 4KEm core. In addition to the
standard JTAG instructions, special instructions defined in
the EJTAG specification define what registers are selected
and how they are used.

Debug Registers

Three debug registers (DEBUG, DEPC, and DESAVE)
have been added to the MIPS Coprocessor 0 (CP0) register
set. The DEBUG register shows the cause of the debug
exception and is used for setting up single-step operations.
The DEPC, or Debug Exception Program Counter, register
holds the address on which the debug exception was taken.
This is used to resume program execution after the debug
operation finishes. Finally, the DESAVE, or Debug
Exception Save, register enables the saving of general-
purpose registers used during execution of the debug
exception handler.

To exit debug mode, a Debug Exception Return (DERET)
instruction is executed. When this instruction is executed,
the system exits debug mode, allowing normal execution of
application and system code to resume.

EJTAG Hardware Breakpoints

There are several types of simple hardware breakpoints
defined in the EJTAG specification. These stop the normal
operation of the CPU and force the system into debug
mode. There are two types of simple hardware breakpoints
implemented in the 4KEm core: Instruction breakpoints
and Data breakpoints.

The 4KEm core can be configured with the following
breakpoint options:

• No data or instruction breakpoints

• One data and two instruction breakpoints

• Two data and four instruction breakpoints

Instruction breaks occur on instruction fetch operations,
and the break is set on the virtual address. A mask can be
applied to the virtual address to set breakpoints on a range
of instructions.

Data breakpoints occur on load/store transactions.
Breakpoints are set on virtual address values, similar to the
Instruction breakpoint. Data breakpoints can be set on a
load, a store, or both. Data breakpoints can also be set
based on the value of the load/store operation. Finally,

masks can be applied to both the virtual address and th
load/store value.

EJTAG Trace

The 4KEm core includes optional support for real-time
tracing of instruction addresses, data addresses and da
values. The trace information is collected in an on-chip
off-chip memory, for post-capture processing by trace
regeneration software.

On-chip trace memory may be configured in size from 0 t
8 MB; it is accessed through the existing EJTAG TAP
interface and requires no additional chip pins. Off-chip
trace memory is accessed through a special trace probe
can be configured to use 4, 8, or 16 data pins plus a clo

Testability

Testability for production testing of the core is supported
through the use of internal scan and memory BIST.

Internal Scan

Full mux-based scan for maximum test coverage is
supported, with a configurable number of scan chains.
ATPG test coverage can exceed 99%, depending on
standard cell libraries and configuration options.

Memory BIST

Memory BIST for the cache arrays and on-chip trace
memory is optional, but can be implemented either throug
the use of integrated BIST features provided with the cor
or inserted with an industry-standard memory BIST CAD
tool.

Integrated Memory BIST

The core provides an integrated memory BIST solution fo
testing the internal cache SRAMs, using BIST controller
and logic tightly coupled to the cache subsystem. Sever
parameters associated with the integrated BIST controlle
are configurable, including the algorithm (March C+ or
IFA-13).

User-specified Memory BIST

Memory BIST can also be inserted with a CAD tool or
other user-specified method. Wrapper modules and sig
14 MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

2

buses of configurable width are provided within the core to
facilitate this approach.

Instruction Set

The 4KEm core instruction set complies with the MIPS3
instruction set architecture.Table 9provides a summary of
instructions implemented by the 4KEm core.

Table 9 4KEm Core Instruction Set

Instruction Description Function

ADD Integer Add Rd = Rs + Rt

ADDI Integer Add Immediate Rt = Rs + Immed

ADDIU Unsigned Integer Add Immediate Rt = Rs + U Immed

ADDIUPC
Unsigned Integer Add Immediate to PC
(MIPS16 only)

Rt = PC + u Immed

ADDU Unsigned Integer Add Rd = Rs + U Rt

AND Logical AND Rd = Rs & Rt

ANDI Logical AND Immediate Rt = Rs & (0 16 || Immed)

BC2F Branch On COP2 Condition False
if COP2Condition(cc) == 0

PC += (int)offset

BC2FL Branch On COP2 Condition False Likely

if COP2Condition(cc) == 0
PC += (int)offset

else
Ignore Next Instruction

BC2T Branch On COP2 Condition True
if COP2Condition(cc) == 1

PC += (int)offset

BC2TL Branch On COP2 Condition True Likely

if COP2Condition(cc) == 1
PC += (int)offset

else
Ignore Next Instruction

BEQ Branch On Equal
if Rs == Rt

PC += (int)offset

BEQL Branch On Equal Likely

if Rs == Rt
PC += (int)offset

else
Ignore Next Instruction

BGEZ Branch on Greater Than or Equal To Zero
if !Rs[31]

PC += (int)offset

BGEZAL
Branch on Greater Than or Equal To Zero And
Link

GPR[31] = PC + 8
if !Rs[31]

PC += (int)offset

BGEZALL
Branch on Greater Than or Equal To Zero And
Link Likely

GPR[31] = PC + 8
if !Rs[31]

PC += (int)offset
else

Ignore Next Instruction
MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00 15

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

BGEZL
Branch on Greater Than or Equal To Zero
Likely

if !Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BGTZ Branch on Greater Than Zero
if !Rs[31] && Rs != 0

PC += (int)offset

BGTZL Branch on Greater Than Zero Likely

if !Rs[31] && Rs != 0
PC += (int)offset

else
Ignore Next Instruction

BLEZ Branch on Less Than or Equal to Zero
if Rs[31] || Rs == 0

PC += (int)offset

BLEZL Branch on Less Than or Equal to Zero Likely

if Rs[31] || Rs == 0
PC += (int)offset

else
Ignore Next Instruction

BLTZ Branch on Less Than Zero
if Rs[31]

PC += (int)offset

BLTZAL Branch on Less Than Zero And Link
GPR[31] = PC + 8
if Rs[31]

PC += (int)offset

BLTZALL Branch on Less Than Zero And Link Likely

GPR[31] = PC + 8
if Rs[31]

PC += (int)offset
else

Ignore Next Instruction

BLTZL Branch on Less Than Zero Likely

if Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BNE Branch on Not Equal
if Rs != Rt

PC += (int)offset

BNEL Branch on Not Equal Likely

if Rs != Rt
PC += (int)offset

else
Ignore Next Instruction

BREAK Breakpoint Break Exception

CACHE Cache Operation See Software User’s Manual

CFC2 Move Control Word From Coprocessor 2 Rt = CCR[2, n]

CLO Count Leading Ones Rd = NumLeadingOnes(Rs)

CLZ Count Leading Zeroes Rd = NumLeadingZeroes(Rs)

COP0 Coprocessor 0 Operation See Software User’s Manual

COP2 Coprocessor 2 Operation See Coprocessor 2 Description

CTC2 Move Control Word To Coprocessor 2 CCR[2, n] = Rt

Table 9 4KEm Core Instruction Set (Continued)

Instruction Description Function
16 MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

DERET Return from Debug Exception
PC = DEPC
Exit Debug Mode

DI Atomically Disable Interrupts Rt = Status; Status IE = 0

DIV Divide
LO = (int)Rs / (int)Rt
HI = (int)Rs % (int)Rt

DIVU Unsigned Divide
LO = (uns)Rs / (uns)Rt
HI = (uns)Rs % (uns)Rt

EHB Execution Hazard Barrier
Stop instruction execution
until execution hazards are
cleared

EI Atomically Enable Interrupts Rt = Status; Status IE = 1

ERET Return from Exception

if SR[2]
PC = ErrorEPC

else
PC = EPC
SR[1] = 0

SR[2] = 0
LL = 0

EXT Extract Bit Field
Rt = ExtractField(Rs, pos,
size)

INS Insert Bit Field
Rt = InsertField(Rs, Rt,
pos, size)

J Unconditional Jump PC = PC[31:28] || offset<<2

JAL Jump and Link
GPR[31] = PC + 8
PC = PC[31:28] || offset<<2

JALR Jump and Link Register
Rd = PC + 8
PC = Rs

JALR.HB Jump and Link Register with Hazard Barrier
Like JALR, but also clears
execution and instruction
hazards

JALRC
Jump and Link Register Compact - do not
execute instruction in jump delay slot(MIPS16
only)

Rd = PC + 2
PC = Rs

JR Jump Register PC = Rs

JR.HB Jump Register with Hazard Barrier
Like JR, but also clears
execution and instruction
hazards

JRC
Jump Register Compact - do not execute
instruction in jump delay slot (MIPS16 only)

PC = Rs

LB Load Byte Rt = (byte)Mem[Rs+offset]

LBU Unsigned Load Byte Rt = (ubyte))Mem[Rs+offset]

LH Load Halfword Rt = (half)Mem[Rs+offset]

LHU Unsigned Load Halfword Rt = (uhalf)Mem[Rs+offset]

Table 9 4KEm Core Instruction Set (Continued)

Instruction Description Function
MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00 17

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

LL Load Linked Word
Rt = Mem[Rs+offset]
LL = 1
LLAdr = Rs + offset

LUI Load Upper Immediate Rt = immediate << 16

LW Load Word Rt = Mem[Rs+offset]

LWC2 Load Word To Coprocessor 2 CPR[2,n,0] = Mem[Rs+offset]

LWPC Load Word, PC relative Rt = Mem[PC+offset]

LWL Load Word Left See Software User’s Manual

LWR Load Word Right See Software User’s Manual

MADD Multiply-Add HI | LO += (int)Rs * (int)Rt

MADDU Multiply-Add Unsigned HI | LO += (uns)Rs * (uns)Rt

MFC0 Move From Coprocessor 0 Rt = CPR[0, Rd, sel]

MFC2 Move From Coprocessor 2 Rt = CPR[2, Rd, sel]

MFHC2 Move From High Half of Coprocessor 2 Rt = CPR[2, Rd, sel] 63..32

MFHI Move From HI Rd = HI

MFLO Move From LO Rd = LO

MOVN Move Conditional on Not Zero
if Rt ≠ 0 then

Rd = Rs

MOVZ Move Conditional on Zero
if Rt = 0 then

Rd = Rs

MSUB Multiply-Subtract HI | LO -= (int)Rs * (int)Rt

MSUBU Multiply-Subtract Unsigned HI | LO -= (uns)Rs * (uns)Rt

MTC0 Move To Coprocessor 0 CPR[0, n, Sel] = Rt

MTC2 Move To Coprocessor 2 CPR[2, n, sel] = Rt

MTHC2 Move To High Half of Coprocessor 2
CPR[2, Rd, sel] = Rt ||
CPR[2, Rd, sel] 31..0

MTHI Move To HI HI = Rs

MTLO Move To LO LO = Rs

MUL Multiply with register write
HI | LO =Unpredictable
Rd = ((int)Rs *
(int)Rt) 31..0

MULT Integer Multiply HI | LO = (int)Rs * (int)Rd

MULTU Unsigned Multiply HI | LO = (uns)Rs * (uns)Rd

NOR Logical NOR Rd = ~(Rs | Rt)

OR Logical OR Rd = Rs | Rt

Table 9 4KEm Core Instruction Set (Continued)

Instruction Description Function
18 MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

ORI Logical OR Immediate Rt = Rs | Immed

PREF Prefetch Load Specified Line into Cache

RDHWR Read Hardware Register
Allows unprivileged access to
registers enabled by HWREna
register

RDPGPR Read GPR from Previous Shadow Set Rt = SGPR[SRSCtlPSS, Rd]

RESTORE
Restore registers and deallocate stack frame
(MIPS16 only)

See Software User’s Manual

ROTR Rotate Word Right Rd = Rt sa-1..0 || Rt 31..sa

ROTRV Rotate Word Right Variable Rd = Rt Rs-1..0 || Rt 31..Rs

SAVE
Save registers and allocate stack frame
(MIPS16 only)

See Software User’s Manual

SB Store Byte (byte)Mem[Rs+offset] = Rt

SC Store Conditional Word
if LL = 1
 mem[Rs+offset] = Rt
Rt = LL

SDBBP Software Debug Break Point Trap to SW Debug Handler

SEB Sign Extend Byte Rd = (byte)Rs

SEH Sign Extend Half Rd = (half)Rs

SH Store Half (half)Mem[Rs+offset] = Rt

SLL Shift Left Logical Rd = Rt << sa

SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]

SLT Set on Less Than

if (int)Rs < (int)Rt
Rd = 1

else
Rd = 0

SLTI Set on Less Than Immediate

if (int)Rs < (int)Immed
Rt = 1

else
Rt = 0

SLTIU Set on Less Than Immediate Unsigned

if (uns)Rs < (uns)Immed
Rt = 1

else
Rt = 0

SLTU Set on Less Than Unsigned

if (uns)Rs < (uns)Immed
Rd = 1

else
Rd = 0

SRA Shift Right Arithmetic Rd = (int)Rt >> sa

SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]

Table 9 4KEm Core Instruction Set (Continued)

Instruction Description Function
MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00 19

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

SRL Shift Right Logical Rd = (uns)Rt >> sa

SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]

SSNOP Superscalar Inhibit No Operation NOP

SUB Integer Subtract Rt = (int)Rs - (int)Rd

SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd

SW Store Word Mem[Rs+offset] = Rt

SWC2 Store Word From Coprocessor 2 Mem[Rs+offset] = CPR[2,n,0]

SWL Store Word Left See Software User’s Manual

SWR Store Word Right See Software User’s Manual

SYNC Synchronize See Software User’s Manual

SYSCALL System Call SystemCallException

TEQ Trap if Equal
if Rs == Rt

TrapException

TEQI Trap if Equal Immediate
if Rs == (int)Immed
 TrapException

TGE Trap if Greater Than or Equal
if (int)Rs >= (int)Rt
 TrapException

TGEI Trap if Greater Than or Equal Immediate
if (int)Rs >= (int)Immed
 TrapException

TGEIU
Trap if Greater Than or Equal Immediate
Unsigned

if (uns)Rs >= (uns)Immed
 TrapException

TGEU Trap if Greater Than or Equal Unsigned
if (uns)Rs >= (uns)Rt
 TrapException

TLT Trap if Less Than
if (int)Rs < (int)Rt
 TrapException

TLTI Trap if Less Than Immediate
if (int)Rs < (int)Immed
 TrapException

TLTIU Trap if Less Than Immediate Unsigned
if (uns)Rs < (uns)Immed
 TrapException

TLTU Trap if Less Than Unsigned
if (uns)Rs < (uns)Rt
 TrapException

TNE Trap if Not Equal
if Rs != Rt
 TrapException

TNEI Trap if Not Equal Immediate
if Rs != (int)Immed
 TrapException

WAIT Wait for Interrupts Stall until interrupt occurs

WRPGPR Write to GPR in Previous Shadow Set SGPR[SRSCtlPSS, Rd] = Rt

WSBH Word Swap Bytes Within HalfWords
Rd = Rt 23..16 || Rt 31..24 ||
Rt 7..0 || Rt 15..8

Table 9 4KEm Core Instruction Set (Continued)

Instruction Description Function
20 MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

n

or

for

led
.

External Interface Signals

This section describes the signal interface of the 4KEm
microprocessor core.

The pin direction key for the signal descriptions is shown
in Table 10 below.

The 4KEm core signals are listed inTable 11 below. Note
that the signals are grouped by logical function, not by
expected physical location. All signals, with the exceptio
of EJ_TRST_N, are active-high signals.EJ_DINT and
SI_NMI go through edge-detection logic so that only one
exception is taken each time they are asserted.

XOR Exclusive OR Rd = Rs ^ Rt

XORI Exclusive OR Immediate Rt = Rs ^ (uns)Immed

ZEB Zero extend byte (MIPS16 only) Rt = (ubyte) Rs

ZEH Zero extend half (MIPS16 only) Rt = (uhalf) Rs

Table 9 4KEm Core Instruction Set (Continued)

Instruction Description Function

Table 10 4KEm Core Signal Direction Key

Dir Description

I Input to the 4KEm core sampled on the rising edge of the appropriate CLK signal.

O
Output of the 4KEm core, unless otherwise noted, driven at the rising edge of the appropriate CLK
signal.

A Asynchronous inputs that are synchronized by the core.

S
Static input to the 4KEm core. These signals are normally tied to either power or ground and should not
change state whileSI_ColdReset is deasserted.

Table 11 4KEm Signal Descriptions

Signal Name Type Description

System Interface

Clock Signals:

SI_ClkIn I
Clock Input. All inputs and outputs, except a few of the EJTAG signals, are sampled and/
asserted relative to the rising edge of this signal.

SI_ClkOut O
Reference Clock for the External Bus Interface. This clock signal provides a reference
deskewing any clock insertion delay created by the internal clock buffering in the core.

Reset Signals:

SI_ColdReset A Hard/Cold Reset Signal. Causes a Reset Exception in the core.

SI_NMI A
Non-Maskable Interrupt. An edge detect is used on this signal. When this signal is samp
asserted (high) one clock after being sampled deasserted, an NMI is posted to the core

SI_Reset A
Soft/Warm Reset Signal. Causes a Reset Exception in the core. Sets Status.SR bit (if
SI_ColdReset is not asserted), but is otherwise ORed withSI_ColdReset before it is used
internally.

Power Management Signals:
MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00 21

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

the

tes

an

ion
pt.

 in

IC

al

er

the
e.

to

een

r.

er
SI_ERL O
This signal represents the state of the ERL bit (2) in the CP0 Status register and indicates
error level. The core assertsSI_ERL whenever a Reset, Soft Reset, or NMI exception is
taken.

SI_EXL O
This signal represents the state of the EXL bit (1) in the CP0 Status register and indica
the exception level. The core assertsSI_EXL whenever any exception other than a Reset,
Soft Reset, NMI, or Debug exception is taken.

SI_RP O
This signal represents the state of the RP bit (27) in the CP0 Status register. Software c
write this bit to indicate that a reduced power mode may be entered.

SI_Sleep O
This signal is asserted by the core whenever the WAIT instruction is executed. The assert
of this signal indicates that the clock has stopped and that the core is waiting for an interru

Interrupt Signals:

SI_EICPresent S Indicates whether an external interrupt controller is present. Value is visible to software
theConfig3VEIC register field.

SI_EISS[3:0] I General purpose register shadow set number to be used when servicing an interrupt in E
interrupt mode.

SI_IAck O

Interrupt acknowledge indication for use in external interrupt controller mode. This sign
is active for a singleSI_ClkIncycle when an interrupt is taken. When the processor initiates
the interrupt exception, it loads the value of theSI_Int[5:0] pins into theCauseRIPL field
(overlaid withCauseIP7..IP2), and signals the external interrupt controller to notify it that the
current interrupt request is being serviced. This allows the controller to advance to anoth
pending higher-priority interrupt, if desired.

SI_Int[5:0] I/A

Active high Interrupt pins. These signals are driven by external logic and when asserted
indicate an interrupt exception to the core. The interpretation of these signals depends on
interrupt mode in which the core is operating; the interrupt mode is selected by softwar

TheSI_Intsignals go through synchronization logic and can be asserted asynchronously
SI_ClkIn.In External Interrupt Controller (EIC) mode, however, the interrupt pins are
interpreted as an encoded value, so they must be asserted synchronously toSI_ClkIn to
guarantee that all bits are received by the core in a particular cycle.

The interrupt pins are level sensitive and should remain asserted until the interrupt has b
serviced.

In Release 1 Interrupt Compatibility mode:

• All 6 interrupt pins have the same priority as far as the hardware is concerned.

• Interrupts are non-vectored.

In Vectored Interrupt (VI) mode:

• TheSI_Int pins are interpreted as individual hardware interrupt requests.

• Internally, the core prioritizes the hardware interrupts and chooses an interrupt vecto

In External Interrupt Controller (EIC) mode:

• An external block prioritizes its various interrupt requests and produces a vector numb
of the highest priority interrupt to be serviced.

• The vector number is driven on theSI_Intpins, and is treated as a 6-bit encoded value in
the range of 0..63.

• When the core starts the interrupt exception, signaled by the assertion ofSI_IAck, it
loads the value of theSI_Int[5:0] pins into theCauseRIPL field (overlaid with
CauseIP7..IP2). The interrupt controller can then signal another interrupt.

Table 11 4KEm Signal Descriptions (Continued)

Signal Name Type Description
22 MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

es

e

em,

ffer.
SI_IPL[5:0] O Current interrupt priority level from theStatusIPL register field, provided for use by an
external interrupt controller. This value is updated wheneverSI_IAck is asserted.

SI_IPTI[2:0] S
Indicates theSI_Int hardware interrupt pin that the timer interrupt pin (SI_TimerInt) is
combined with external to the core. The value of this bus is visible to software in the
IntCtlIPTI register field.

SI_SWInt[1:0] O Software interrupt request. These signals represent the value in theIP[1:0] field of the
Cause register. They are provided for use by an external interrupt controller.

SI_TimerInt O

Timer interrupt indication. This signal is asserted whenever theCount andCompare
registers match and is deasserted when theCompare register is written. This hardware pin
represents the value of theCauseTI register field.

For Release 1 Interrupt Compatibility mode or Vectored Interrupt mode:

In order to generate a timer interrupt, theSI_TimerInt signal needs to be brought back into
the 4KEm core on one of the sixSI_Int interrupt pins in a system-dependent manner.
Traditionally, this has been accomplished by muxingSI_TimerIntwith SI_Int[5]. Exposing
SI_TimerInt as an output allows more flexibility for the system designer. Timer interrupts
can be muxed or ORed into one of the interrupts, as desired in a particular system. TheSI_Int
hardware interrupt pin with which theSI_TimerInt signal is merged is indicated via the
SI_IPTI static input pins.

For External Interrupt Controller (EIC) mode:

TheSI_TimerIntsignal is provided to the external interrupt controller, which then prioritizes
the timer interrupt with all other interrupt sources, as desired. The controller then encod
the desired interrupt value on theSI_Int pins. SinceSI_Int is usually encoded, theSI_IPTI
pins are not meaningful in EIC mode.

Configuration Inputs:

SI_CPUNum[9:0] S

Unique identifier to specify an individual core in a multi-processor system. The hardwar
value specified on these pins is available in theCPUNum field of theEBase register, so it
can be used by software to distinguish a particular processor. In a single processor syst
this value should be set to zero.

SI_Endian S

Indicates the base endianness of the core.

SI_MergeMode[1:0] S

The state of these signals determines the merge mode for the 16-byte collapsing write bu

Table 11 4KEm Signal Descriptions (Continued)

Signal Name Type Description

EB_Endian Base Endian Mode

0 Little Endian

1 Big Endian

Encoding Merge Mode

002 No Merge

012 Reserved

102 Full Merge

112 Reserved
MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00 23

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

 on

valid,

nce.

rst.

en
SI_SimpleBE[1:0] S

The state of these signals can constrain the core to only generate certain byte enables
EC™ interface transactions. This eases connection to some existing bus standards.

External Bus Interface

EB_ARdy I
Indicates whether the target is ready for a new address. The core will not complete the
address phase of a new bus transaction until the clock cycle afterEB_ARdy is sampled
asserted.

EB_AValid O
When asserted, indicates that the values on the address bus and access types lines are
signifying the beginning of a new bus transaction.EB_AValid must always be valid.

EB_Instr O
When asserted, indicates that the transaction is an instruction fetch versus a data refere
EB_Instr is only valid whenEB_AValid is asserted.

EB_Write O
When asserted, indicates that the current transaction is a write. This signal is only valid
whenEB_AValid is asserted.

EB_Burst O

When asserted, indicates that the current transaction is part of a cache fill or a write bu
Note that there is redundant information contained inEB_Burst, EB_BFirst, EB_BLast, and
EB_BLen. This is done to simplify the system design—the information can be used in
whatever form is easiest.

EB_BFirst O When asserted, indicates the beginning of the burst.EB_BFirst is always valid.

EB_BLast O When asserted, indicates the end of the burst.EB_BLast is always valid.

EB_BLen[1:0] O

Indicates the length of the burst. This signal is only valid whenEB_AValid is asserted.

EB_SBlock S
Static input which determines burst order. When asserted, sub-block ordering is used. Wh
deasserted, sequential addressing is used.

Table 11 4KEm Signal Descriptions (Continued)

Signal Name Type Description

SI_SimpleBE[1:0] Byte Enable Mode

002 All BEs allowed

012
Naturally aligned bytes, half-
words, and words only

102 Reserved

112 Reserved

EB_BLength[1:0] Burst Length

0 reserved

1 4

2 reserved

3 reserved
24 MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

ng

ert

in

l

he
EB_BE[3:0] O

Indicates which bytes of theEB_RData or EB_WData buses are involved in the current
transaction. If anEB_BE signal is asserted, the associated byte is being read or written.
EB_BE lines are only valid whileEB_AValid is asserted.

EB_A[35:2] O
Address lines for external bus. Only valid whenEB_AValidis asserted.EB_A[35:32]are tied
to 0 in this core.

EB_WData[31:0] O Output data for writes.

EB_RData[31:0] I Input Data for reads.

EB_RdVal I
Indicates that the target is driving read data onEB_RDatalines.EB_RdValmust always be
valid.EB_RdValmay never be sampled asserted until the rising edge after the correspondi
EB_ARdy was sampled asserted.

EB_WDRdy I
Indicates that the target of a write is ready. TheEB_WDatalines can change in the next clock
cycle.EB_WDRdy will not be sampled until the rising edge where the corresponding
EB_ARdy is sampled asserted.

EB_RBErr I
Bus error indicator for read transactions.EB_RBErr is sampled on every rising clock edge
until an active sampling ofEB_RdVal. EB_RBErr sampled with assertedEB_RdVal
indicates a bus error during read.EB_RBErr must be deasserted in idle phases.

EB_WBErr I
Bus error indicator for write transactions.EB_WBErr is sampled on the rising clock edge
following an active sample ofEB_WDRdy. EB_WBErr must be deasserted in idle phases.

EB_EWBE I
Indicates that any external write buffers are empty. The external write buffers must deass
EB_EWBEin the cycle after the correspondingEB_WDRdyis asserted and keepEB_EWBE
deasserted until the external write buffers are empty.

EB_WWBE O When asserted, indicates that the core is waiting for external write buffers to empty.

Coprocessor Interface

Instruction dispatch: These signals are used to transfer an instruction from the 4KEm core to the COP2 coprocessor.

CP2_ir_0[31:0] O
Coprocessor Arithmetic and To/From Instruction Word.

Valid in the cycle beforeCP2_as_0, CP2_ts_0 or CP2_fs_0 is asserted.

CP2_irenable_0 O

Enable Instruction Registering. When deasserted, no instruction strobes will be asserted
the following cycle. When asserted, theremay be an instruction strobe asserted in the
following cycle. Instruction strobes includeCP2_as_0, CP2_ts_0, CP2_fs_0.

Note: This is the only late signal in the interface. The intended function is to use this signa
as a clock gate condition on the capture latches in the coprocessor forCP2_ir_0[31:0].

CP2_as_0 O

Coprocessor2 Arithmetic Instruction Strobe. Asserted in the cycle after an arithmetic
coprocessor2 instruction is available onCP2_ir_0[31:0]. If CP2_abusy_0 was asserted in
the previous cycle, this signal will not be asserted. This signal will never be asserted in t
same cycle thatCP2_ts_0 or CP2_fs_0 is asserted.

Table 11 4KEm Signal Descriptions (Continued)

Signal Name Type Description

EB_BE
Signal

Read Data Bits
Sampled

Write Data Bits
Driven Valid

EB_BE[0] EB_RData[7:0] EB_WData[7:0]

EB_BE[1] EB_RData[15:8] EB_WData[15:8]

EB_BE[2] EB_RData[23:16] EB_WData[23:16]

EB_BE[3] EB_RData[31:24] EB_WData[31:24]
MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00 25

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

ill

ble

ring
te

an

pleting
CP2_abusy_0 I
Coprocessor2 Arithmetic Busy. When asserted, a coprocessor2 arithmetic instruction w
not be dispatched.CP2_as_0 will not be asserted in the cycle after this signal is asserted.

CP2_ts_0 O

Coprocessor2 To Strobe. Asserted in the cycle after a To COP2 Op instruction is availa
onCP2_ir_0[31:0]. If CP2_tbusywas asserted in the previous cycle, this signal will not be
asserted. This signal will never be asserted in the same cycle thatCP2_as_0or CP2_fs_0is
asserted.

CP2_tbusy_0 I
To Coprocessor2 Busy. When asserted, a To COP2 Op will not be dispatched.CP2_ts_0will
not be asserted in the cycle after this signal is asserted.

CP2_fs_0 O

Coprocessor2 From Strobe. Asserted in the cycle after a From COP2 Op instruction is
available onCP2_ir_0[31:0]. If CP2_fbusy_0was asserted in the previous cycle, this signal
will not be asserted. This signal will never be asserted in the same cycle thatCP2_as_0 or
CP2_ts_0 is asserted.

CP2_fbusy_0 I
From Coprocessor2 Busy. When asserted, a From COP2 Op will not be dispatched.
CP2_fs_0 will not be asserted in the cycle after this signal is asserted.

CP2_endian_0 O
Big Endian Byte Ordering. When asserted, the processor is using big endian byte orde
for the dispatched instruction. When deasserted, the processor is using little-endian by
ordering. Valid the cycle beforeCP2_as_0, CP2_fs_0 or CP2_ts_0 is asserted.

CP2_inst32_0 O

MIPS32 Compatibility Mode - Instructions. When asserted, the dispatched instruction is
restricted to the MIPS32 subset of instructions. Please refer to the MIPS64 architecture
specification for a complete description of MIPS32 compatibility mode. Valid the cycle
beforeCP2_as_0, CP2_fs_0 or CP2_ts_0 is asserted.

Note: The 4KEm core is a MIPS32 core, and will only issue MIPS32 instructions. Thus
CP2_inst32_0 is tied high.

CP2_kd_mode_0 O
Kernel/Debug Mode. When asserted, the processor is running in kernel or debug mode. C
be used to enable “privileged” coprocessor instructions. Valid the cycle beforeCP2_as_0,
CP2_fs_0 or CP2_ts_0 is asserted.

To Coprocessor Data: These signals are used when data is sent from the 4KEm core to the COP2 coprocessor, as part of com
a To Coprocessor instruction.

CP2_tds_0 O
Coprocessor To Data Strobe. Asserted when To COP Op data is available on
CP2_tdata_0[31:0].

Table 11 4KEm Signal Descriptions (Continued)

Signal Name Type Description
26 MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

ly

to

pleting

lid
CP2_torder_0[2:0] O

Coprocessor To Order. Specifies which outstanding To COP Op the data is for. Valid on
whenCP2_tds_0 is asserted.

Note: The 4KEm core will never send Data Out-of-Order, thusCP2_torder_0[2:0] is tied
to 0002.

CP2_tordlim_0[2:0] S

To Coprocessor Data Out-of-Order Limit. This signal forces the integer processor core
limit how much it can reorder To COP Data. The value on this signal corresponds to the
maximum allowed value to be used onCP2_torder_0[2:0].

Note: The 4KEm core will never send Data Out-of-Order, thusCP2_tordlim_0[2:0] is
ignored.

CP2_tdata_0[31:0] O
To Coprocessor Data. Data to be transferred to the coprocessor. Valid whenCP2_tds_0 is
asserted.

From Coprocessor Data: These signals are used when data is sent to the 4KEm core from the COP2 coprocessor, as part of com
a From Coprocessor instruction.

CP2_fds_0 I
Coprocessor From Data Strobe. Asserted when From COP Op data is available on
CP2_fdata_0[31:0].

CP2_forder_0[2:0] I

Coprocessor From Order. Specifies which outstanding From COP Op the data is for. Va
only whenCP2_fds_0 is asserted.

Note: Only values 0002 and 0012 are allowed seeCP2_fordlim_0[2:0] below

Table 11 4KEm Signal Descriptions (Continued)

Signal Name Type Description

CP2_torder_0[2:0] Order

0002 Oldest outstanding To COP Op data transfer

0012 2nd oldest To COP Op data transfer.

0102 3rd oldest To COP Op data transfer.

0112 4th oldest To COP Op data transfer.

1002 5th oldest To COP Op data transfer.

1012 6th oldest To COP Op data transfer.

1102 7th oldest To COP Op data transfer.

1112 8th oldest To COP Op data transfer.

CP2_forder_0[2:0] Order

0002 Oldest outstanding From COP Op data transfer

0012 2nd oldest From COP Op data transfer.

0102 3rd oldest From COP Op data transfer.

0112 4th oldest From COP Op data transfer.

1002 5th oldest From COP Op data transfer.

1012 6th oldest From COP Op data transfer.

1102 7th oldest From COP Op data transfer.

1112 8th oldest From COP Op data transfer.
MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00 27

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

om the

e

ted,

ble

ssor.

on
CP2_fordlim_0[2:0] O

From Coprocessor Data Out-of-Order Limit. This signal sets the limit on how much the
coprocessor can reorder From COP Data. The value on this signal corresponds to the
maximum allowed value to be used onCP2_forder_0[2:0].

Note: The 4KEm core can handle one Out-of-Order From Data transfer.
CP2_fordlim_0[2:0]is therefore tied to 0012. The core will also never have more than two
outstanding From COP instructions issued, which also automatically limits
CP2_forder_0[2:0] to 0012.

CP2_fdata_0[31:0] I
From Coprocessor Data. Data to be transferred from coprocessor. Valid whenCP2_fds_0is
asserted.

Coprocessor Condition Code Check: These signals are used to report the result of a condition code check to the 4KEm core fr
COP2 coprocessor. This is only used for BC2 instructions.

CP2_cccs_0 I
Coprocessor Condition Code Check Strobe. Asserted when coprocessor condition cod
check bits are available onCP2_ccc_0.

CP2_ccc_0 I
Coprocessor Conditions Code Check. Valid whenCP2_cccs_0 is asserted. When asserted,
the branch instruction checking the condition code should take the branch. When deasser
the branch instruction should not branch.

Coprocessor Exceptions: These signals are used by the COP2 coprocessor to report exception for each instruction.

CP2_excs_0 I
Coprocessor Exception Strobe. Asserted when coprocessor exception signalling is availa
onCP2_exc_0 andCP2_exccode_0.

CP2_exc_0 I
Coprocessor Exception. When asserted, a Coprocessor exception is signaled on
CP2_exccode_0[4:0]. Valid whenCP2_excs_0 is asserted.

CP2_exccode_0[4:0] I

Coprocessor Exception Code. Valid when bothCP2_excs_0 andCP2_exc_0 are asserted.

Instruction Nullification: These signals are used by the 4KEm core to signal nullification of each instruction to the COP2 coproce

CP2_nulls_0 O Coprocessor Null Strobe. Asserted when a nullification signal is available onCP2_null_0.

CP2_null_0 O

Nullify Coprocessor Instruction. When deasserted, the 4KEm core is signalling that the
instruction is not nullified. When asserted, the 4KEm core is signalling that the instructi
is nullified, and no further transactions will take place for this instruction. Valid when
CP2_nulls_0 is asserted.

Instruction Killing: These signals are used by the 4KEm core to signal killing of each instruction to the COP2 coprocessor.

CP2_kills_0 O Coprocessor Kill Strobe. Asserted when kill signalling is available onCP2_kill_0[1:0].

Table 11 4KEm Signal Descriptions (Continued)

Signal Name Type Description

CP2_exccode[4:0] Exception

010102 (RI) Reserved Instruction Exception

100002
(IS1) Available for Coprocessor

specific Exception

100012
(IS1) Available for Coprocessor

specific Exception

100102 C2E Exception

All others Reserved
28 MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

it.

or 2

go

t

ore

e

 is
CP2_kill_0[1:0] O

Kill Coprocessor Instruction. Valid whenCP2_kills_0 is asserted.

If an instruction is killed, no further transactions will take place on the interface for this
instruction.

Miscellaneous COP2 signals:

CP2_reset O Coprocessor Reset. Asserted when a hard or soft reset is performed by the integer un

CP2_present S
COP2 Present. Must be asserted when COP2 hardware is connected to the Coprocess
Interface.

CP2_idle I
Coprocessor Idle. Asserted when the coprocessor logic is idle. Enables the processor to
into sleep mode and shut down the clock. Valid only ifCP2_present is asserted.

EJTAG Interface

TAP interface. These signals comprise the EJTAG Test Access Port. These signals will not be connected if the core does no
implement the TAP controller.

EJ_TRST_N I
Active-low Test Reset Input (TRST*) for the EJTAG TAP. At power-up, the assertion of
EJ_TRST_N causes the TAP controller to be reset.

EJ_TCK I Test Clock Input (TCK) for the EJTAG TAP.

EJ_TMS I Test Mode Select Input (TMS) for the EJTAG TAP.

EJ_TDI I Test Data Input (TDI) for the EJTAG TAP.

EJ_TDO O Test Data Output (TDO) for the EJTAG TAP.

EJ_TDOzstate O

Drive indication for the output of TDO for the EJTAG TAP at chip level:
1: The TDO output at chip level must be in Z-state
0: The TDO output at chip level must be driven to the value ofEJ_TDO

IEEE Standard 1149.1-1990 defines TDO as a 3-stated signal. To avoid having a 3-state c
output, the 4KEm core outputs this signal to drive an external 3-state buffer.

Debug Interrupt:

EJ_DINTsup S
Value of DINTsup for the Implementation register. When high, this signal indicates that th
EJTAG probe can use the DINT signal to interrupt the processor.

EJ_DINT I
Debug exception request when this signal is asserted in a CPU clock period after being
deasserted in the previous CPU clock period. The request is cleared when debug mode
entered. Requests when in debug mode are ignored.

Table 11 4KEm Signal Descriptions (Continued)

Signal Name Type Description

CP2_kill_0[1:0] Type of Kill

002 Instruction is not killed and
results can be committed.012

102
Instruction is killed.

(not due toCP2_exc_0)

112
Instruction is killed.
(due toCP2_exc_0)
MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00 29

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

ow

se
et these

ard
at:

y
e

ing

an be

face
Debug Mode Indication:

EJ_DebugM O
Asserted when the core is in Debug Mode. This can be used to bring the core out of a l
power mode. In systems with multiple processor cores, this signal can be used to
synchronize the cores when debugging.

Device ID bits:

These inputs provide an identifying number visible to the EJTAG probe. If the EJTAG TAP controller is not implemented, the
inputs are not connected. These inputs are always available for soft core customers. On hard cores, the core “hardener” can s
inputs to their own values.

EJ_ManufID[10:0] S

Value of the ManufID[10:0] field in the Device ID register. As per IEEE 1149.1-1990
section 11.2, the manufacturer identity code shall be a compressed form of JEDEC stand
manufacturer’s identification code in the JEDEC Publications 106, which can be found
http://www.jedec.org/

ManufID[6:0] bits are derived from the last byte of the JEDEC code by discarding the parit
bit. ManufID[10:7] bits provide a binary count of the number of bytes in the JEDEC cod
that contain the continuation character (0x7F). Where the number of continuations
characters exceeds 15, these 4 bits contain the modulo-16 count of the number of
continuation characters.

EJ_PartNumber[15:0] S Value of the PartNumber[15:0] field in the Device ID register.

EJ_Version[3:0] S Value of the Version[3:0] field in the Device ID register.

System Implementation Dependent Outputs:

These signals come from EJTAG control registers. They have no effect on the core, but can be used to give EJTAG debugg
software additional control over the system.

EJ_SRstE O
Soft Reset Enable. EJTAG can deassert this signal if it wants to mask soft resets. If this
signal is deasserted, none, some, or all soft reset sources are masked.

EJ_PerRst O
Peripheral Reset. EJTAG can assert this signal to request the reset of some or all of the
peripheral devices in the system.

EJ_PrRst O
Processor Reset. EJTAG can assert this signal to request that the core be reset. This c
fed into theSI_Reset signal.

EJTAG Trace Interface

These signals enable an interface to optional off-chip trace memory. The EJTAG Trace interface connects to the Probe Inter
Block (PIB) which in turn connects to the physical off-chip trace pins.

Note that if on-chip trace memory is used, access occurs via the EJTAG TAP interface, and this interface is not required.

Table 11 4KEm Signal Descriptions (Continued)

Signal Name Type Description
30 MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

m

the

alid
TC_ClockRatio[2:0] O

Clock ratio. This is the clock ratio set by software inTCBCONTROLB.CR. The value will
be within the boundaries defined byTC_CRMaxandTC_CRMin.The table below shows the
encoded values for clock ratio.

TC_CRMax[2:0] S
Maximum clock ratio supported. This static input sets the CRMax field of theTCBCONFIG
register. It defines the capabilities of the Probe Interface Block (PIB) module.This field
determines the minimum value ofTC_ClockRatio.

TC_CRMin[2:0] S
Minimum clock ratio supported. This input sets the CRMin field of theTCBCONFIG
register. It defines the capabilities of the PIB module. This field determines the maximu
value ofTC_ClockRatio.

TC_ProbeWidth[1:0] S

This static input will set the PW field of theTCBCONFIG register.

If this interface is not driving a PIB module, but some chip-level TCB-like module, then this
field should be set to 2’b11 (reserved value for PW).

TC_PibPresent S
Must be asserted when a PIB is attached to the TC Interface. When de-asserted (low) all
other inputs are disregarded.

TC_TrEnable O
Trace Enable, when asserted the PIB must start running its output clock and can expect v
data on all other outputs.

TC_Calibrate O

This signal is asserted when the Cal bit in theTCBCONTROLB register is set.

For a simple PIB which only serves one TCB, this pin can be ignored. For a multi-core
capable PIB which also usesTC_Valid andTC_Stall, the PIB must start producing the
calibration pattern when this signal is asserted.

Table 11 4KEm Signal Descriptions (Continued)

Signal Name Type Description

TC_ClockRatio Clock Ratio

000 8:1 (Trace clock is eight times the core clock)

001 4:1 (Trace clock is four times the core clock)

010 2:1 (Trace clock is double the core clock)

011 1:1 (Trace clock is same as the core clock)

100 1:2 (Trace clock is one half the core clock)

101 1:4 (Trace clock is one fourth the core clock)

110 1:6 (Trace clock is one sixth the core clock)

111 1:8 (Trace clock is one eight the core clock)

TC_ProbeWidth
Number physical data

pin on PIB

00 4 bits

01 8 bits

10 16 bits

11 Not directly to PIB
MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00 31

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

-
l

.
:2
).

ut.

 is
TC_DataBits[2:0] I

This input identifies the number of bits picked up by the probe interface module in each
“cycle”.

If TC_ClockRatio indicates a clock-ratio higher than 1:2, then clock multiplication in the
Probe logic is used. The “cycle” is equal to each core clock cycle.

If TC_ClockRatio indicates a clock-ratio lower than or equal to 1:2, then “cycle” is (clock
ratio * 2) of the core clock cycle. For example, with a clock ratio of 1:2, a “cycle” is equa
to core clock cycle; with a clock ratio of 1:4, a “cycle” is equal to one half of core clock
cycle.

This input controls the down-shifting amount and frequency of the trace word on
TC_Data[63:0]. The bit width and the correspondingTC_DataBits value is shown in the
table below.

This input might change as the value onTC_ClockRatio[2:0] changes.

TC_Valid O
Asserted when a valid new trace word is started on theTC_Data[63:0] signals.

TC_Valid is only asserted whenTC_DataBits is 100.

TC_Stall I

When asserted, a newTC_Validin the following cycle is stalled.TC_Validis still asserted,
but theTC_Datavalue andTC_Validare held static, until the cycle afterTC_Stallis sampled
low.

TC_Stall is only sampled in the cycle before a newTC_Valid cycle, and only when
TC_DataBits is 100, indicating a full word ofTC_Data.

TC_Data[63:0] O

Trace word data. The value on this 64-bit interface is shifted down as indicated in
TC_DataBits[2:0]. In the first cycle where a new trace word is valid on all the bits and
TC_DataBits[2:0] is 100,TC_Valid is also asserted.

The Probe Interface Block (PIB) will only be connected to [(N-1):0] bits of this output bus
N is the number of bits picked up by the PIB in each core clock cycle. For clock ratios 1
and lower, N is equal to the number of physical trace pins (legal values of N are 4, 8, or 16
For higher clock ratios, N is larger than the number of physical trace pins.

TC_ProbeTrigIn A
Rising edge trigger input. The source should be the Probe Trigger input. The input is
considered asynchronous; i.e., it is double registered in the core.

TC_ProbeTrigOut O
Single cycle (relative to the “cycle” defined the description ofTC_DataBits) high strobe,
trigger output. The target of this trigger is intended to be the external probe’s trigger outp

TC_ChipTrigIn A
Rising edge trigger input. The source should be on-chip. The input is considered
asynchronous; i.e., it is double registered in the core.

TC_ChipTrigOut O
Single cycle (relative to core clock) high strobe, trigger output. The target of this trigger
intended to be an on-chip unit.

Performance Monitoring Interface

Table 11 4KEm Signal Descriptions (Continued)

Signal Name Type Description

TC_DataBits[2:0]
Probe uses following bits
from TC_Data each cycle

000 TC_Data[3:0]

001 TC_Data[7:0]

010 TC_Data[15:0]

011 TC_Data[31:0]

100 TC_Data[63:0]

Others Unused
32 MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

nce.

r.

ffer.

ess to
inte
ingle
 These signals can be used to implement performance counters, which can be used to monitor hardware/software performa

PM_DCacheHit O This signal is asserted whenever there is a data cache hit.

PM_DCacheMiss O This signal is asserted whenever there is a data-cache miss.

PM_DTLBHit O This signal is not used in the 4KEm processor core and is tied to ground.

PM_DTLBMiss O This signal is not used in the 4KEm processor core and is tied to ground.

PM_ICacheHit O This signal is asserted whenever there is an instruction-cache hit.

PM_ICacheMiss O This signal is asserted whenever there is an instruction-cache miss.

PM_InstComplete O This signal is asserted each time an instruction completes in the pipeline.

PM_ITLBHit O This signal is not used in the 4KEm processor core and is tied to ground.

PM_ITLBMiss O This signal is not used in the 4KEm processor core and is tied to ground.

PM_JTLBHit O This signal is not used in the 4KEm processor core and is tied to ground.

PM_JTLBMiss O This signal is not used in the 4KEm processor core and is tied to ground.

PM_WTBMerge O This signal is asserted whenever there is a successful merge in the write-through buffe

PM_WTBNoMerge O This signal is asserted whenever a non-merging store is written to the write-through bu

ScratchPad RAM interface

This interface allows a ScratchPad RAM (SPRAM) array to be connected in parallel with the cache arrays, enabling fast acc
data. There are independent interfaces for Instruction and Data ScratchPads. Signals related to the Instruction Scratchpad rface
are prefixed with “ISP_”. Signals related to the Data Scratchpad interface are prefixed with “DSP_”. Note: In order to achieve s
cycle access, the ScratchPad interface is not registered, unlike the other core interfaces. This requires more careful timing
considerations.

DSP_TagAddr[19:4] O Virtual index into the SPRAM used for tag reads and writes.

DSP_TagRdStr O Tag Read Strobe - Hit, Stall, TagRdValue use this strobe.

DSP_TagWrStr O
Tag Write Strobe - If SPRAM tag is software configurable, this signal will indicate when to
update the tag value.

DSP_TagCmpValue[23:0] O

Tag Compare Value - This bus is used for both tag comparison and tag write value.

For tag comparison, the bus usage is {PA[31:10], 2’b0} and contains the address to
determine hit/miss.

For tag writes, the bus contains {PA[31:10], Lock, Valid} from theTagLo register.

DSP_DataAddr[19:2] O Virtual index into the SPRAM used for data reads and writes.

DSP_DataWrValue[31:0] O Data Write Value - Data value to be written to the data array.

DSP_DataRdStr O Data Read Strobe - Indicates that the data array should be read.

DSP_DataWrStr O Data Write Strobe - Indicates that the data array should be written.

DSP_DataWrMask[3:0] O Data Write Mask - Byte enables for a data write.

DSP_DataRdValue[31:0] I Data Read Value - Data value read from the data array.

DSP_TagRdValue[23:0] I
Tag Read Value - Tag value read from the tag array. Written toTagLoregister on a CACHE
instruction. Read value maps into theseTagLo fields: {PA[31:10], Lock, Valid}

Table 11 4KEm Signal Descriptions (Continued)

Signal Name Type Description
MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00 33

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

ased

.

e

re.

rray.

ray.

ray.

ect

ent.
DSP_Hit I Hit - Indicates that this read was to an address covered by the SPRAM.

DSP_Stall I Stall - Indicates that the read has not yet completed.

DSP_Present S Present - Indicates that a SPRAM array is connected to this port.

ISP_Addr[19:2] O Virtual index into the SPRAM used for both reads and writes of tag and data.

ISP_RdStr O
Read Strobe - indicates a read of the tag and data arrays. Hit and Stall signals are also b
off of this strobe.

ISP_TagWrStr O
Tag Write Strobe - If SPRAM tag is software configurable, this signal will indicate when to
update the tag value.

ISP_DataTagValue[31:0] O

Write/Compare Data

For data writes, this is the value to be written to the data array.

For tag writes the bus contains the {8’b0, PA[31:10], Lock, Valid} from the TagLo register

For tag comparison, the bus has the address to be used for hit/miss determination in th
format {8’b0, PA[31:10], Uncacheable, 1’b0}. When high, the Uncacheable bit indicates
that the physical address bits (PA[31:10]) are to an uncacheable address; when the
Uncacheable bit is low, the physical address is to a cacheable address.

ISP_DataWrStr O Data Write Strobe - Indicates that the data array should be written.

ISP_DataRdValue[31:0] I Data Read Value - Data value read from the data array.

ISP_TagRdValue[23:0] I
Tag Read Value - Tag value read from the tag array. Written toTagLoregister on a CACHE
instruction. Read value maps into theseTagLo fields: {PA[31:10], Lock, Valid}

ISP_Hit I Hit - Indicates that this read was to an address covered by the SPRAM.

ISP_Stall I Stall - Indicates that the read has not yet completed.

ISP_Present S Present - Indicates that a SPRAM array is connected to this port.

Integrated Memory BIST Interface

These signals provide the interface to optional integrated memory BIST capability for testing the SRAM arrays within the co

gmbinvoke I Enable signal for integrated BIST controllers.

gmbdone O Common completion indicator for all integrated BIST sequences.

gmbddfail O When high, indicates that the integrated BIST test failed on the data cache data array.

gmbtdfail O When high, indicates that the integrated BIST test failed on the data cache tag array.

gmbwdfail O When high, indicates that the integrated BIST test failed on the data cache way select a

gmbdifail O When high, indicates that the integrated BIST test failed on the instruction cache data ar

gmbtifail O When high, indicates that the integrated BIST test failed on the instruction cache tag ar

gmbwifail O
When high, indicates that the integrated BIST test failed on the instruction cache way sel
array.

Scan Test Interface

These signals provide an interface for testing the core. The use and configuration of these pins are implementation-depend

Table 11 4KEm Signal Descriptions (Continued)

Signal Name Type Description
34 MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

y

al

ks

ure
EC Interface Transactions

The 4KEm core implements the EC™ interface for its bus
transactions. This interface uses a pipelined, in-order
protocol with independent address, read data, and write
data buses. The following subsections describe the four
basic bus transactions: single read, single write, burst read,
and burst write.

Single Read

Figure 7 shows the basic timing relationships of signals
during a simple read transaction. During a single read
cycle, the 4KEm core drives the address ontoEB_A[35:2]
and byte enable information ontoEB_BE[3:0]. To
maximize performance, the EC interface does not define a
maximum number of outstanding bus cycles. Instead it
provides theEB_ARdyinput signal. This signal is driven by
external logic and controls the generation of addresses on
the bus.

In the 4KEm core, the address is driven whenever it
becomes available, regardless of the state ofEB_ARdy.
However, the 4KEm core always continues to drive the
address until the clock afterEB_ARdyis sampled asserted.
For example, at the rising edge of the clock 2 inFigure 7,
theEB_ARdysignal is sampled low, indicating that external
logic is not ready to accept the new address. However, the
4KEm core still drivesEB_A[35:2] in this clock as shown.
On the rising edge of clock 3, the 4KEm core samples
EB_ARdyasserted and continues to drive the address until
the rising edge of clock 4.

Figure 7 Single Read Transaction Timing Diagram

TheEB_Instr signal is only asserted during a single read
cycle if there is an instruction fetch from non-cacheable
memory space. TheEB_AValid signal is driven in each
clock thatEB_A[35:2] is valid on the bus. The 4KEm core
drivesEB_Write low to indicate a read transaction.

TheEB_RData[31:0] andEB_RdVal signals are first
sampled on the rising edge of clock 4, one clock after
EB_ARdy is sampled asserted. Data is sampled on ever
clock thereafter untilEB_RdVal is sampled asserted.

If a bus error occurs during the data transaction, extern
logic assertsEB_RBErr in the same clock asEB_RdVal.

gscanenable I
This signal should be asserted while scanning vectors into or out of the core. The
gscanenable signal must be deasserted during normal operation and during capture cloc
in test mode.

gscanmode I
This signal should be asserted during all scan testing both while scanning and during capt
clocks. Thegscanmode signal must be deasserted during normal operation.

gscanramwr I
This signal controls the read and write strobes to the cache SRAM whengscanmode is
asserted.

gscanin_X I These signal(s) are the inputs to the scan chain(s).

gscanout_X O These signal(s) are the outputs from the scan chain(s).

BistIn[n:0] I Input to user-specified BIST controller.

BistOut[n:0] O Output from user-specified BIST controller.

Table 11 4KEm Signal Descriptions (Continued)

Signal Name Type Description

EB_Clk

EB_A[35:2]

EB_Instr,

EB_AValid

EB_RData[31:0]

EB_RdVal

EB_RBErr

EB_ARdy
Addr
Wait

Address and Control held until clock after EB_ARdy sampled asserted

Valid

Valid

Valid

EB_BE[3:0],

Driven by system logic

Clock # 1 2 3 4 5 6 7 8

EB_Write
MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00 35

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

s
the

6-

ol
d

ng
Single Write

Figure 8shows a typical write transaction. The 4KEm core
drives address and control information onto the
EB_A[35:2]andEB_BE[3:0]signals on the rising edge of
clock 2. As in the single read cycle, these signals remain
active until the clock edge after theEB_ARdy signal is
sampled asserted. The 4KEm core asserts theEB_Write
signal to indicate that a valid write cycle is on the bus and
EB_AValid to indicate that valid address is on the bus.

The 4KEm core drives write data ontoEB_WData[31:0]in
the same clock as the address and continues to drive data
until the clock edge after theEB_WDRdysignal is sampled
asserted. If a bus error occurs during a write operation,
external logic asserts theEB_WBErrsignal one clock after
assertingEB_WDRdy.

Figure 8 Single Write Transaction Timing Diagram

Burst Read

The 4KEm core is capable of generating burst transactions
on the bus. A burst transaction is used to transfer multiple
data items in one transaction.

Figure 9 Burst Read Transaction Timing Diagram

Figure 9 shows an example of a burst read transaction.
Burst read transactions initiated by the 4KEm core alway
contain four data transfers in a sequence determined by
critical word (the address that caused the miss) and
EB_SBlock. In addition, the data requested is always a 1
byte aligned block.

The order of words within this 16-byte block varies
depending on which of the words in the block is being
requested by the execution unit and the ordering protoc
selected. The burst always starts with the word requeste
by the execution unit and proceeds in either an ascendi
or descending address order, wrapping when the block
boundary is reached.Table 12 andTable 13 show the
sequence of address bits 2 and 3.

EB_Clk

EB_A[35:2]

EB_BE[3:0]

EB_AValid

EB_WData[31:0]

EB_WDRdy

EB_WBErr

EB_Write

EB_ARdy

Address and Control held until clock after EB_ARdy sampled asserted

Valid

Valid

Valid

Driven by system logic

Data is Driven until clock after EB_WDRdy

Addr
Wait

Clock # 1 2 3 4 5 6 7 8

Table 12 Sequential Ordering Protocols

Starting Address
EB_A[3:2]

Address Progression
of EB_A[3:2]

00 00, 01, 10, 11

01 01, 10, 11, 00

10 10, 11, 00, 01

11 11, 00, 01, 10

Addr
Wait

EB_Clk

EB_A[35:2]

EB_AValid

EB_RData[31:0]

EB_RdVal

EB_RBErr

EB_BFirst

EB_ARdy

EB_Instr

Adr1 Adr2

Valid

EB_Burst

Adr3 Adr4

EB_BE[3:0]

Data1 Data2 Data3 Data4

EB_BLast

Driven by system logic

Clock # 1 2 3 4 5 6 7 8

EB_Write

Read
Wait

Read
Wait
36 MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

ls

st
m

te.
f

The 4KEm core drives address and control information
onto theEB_A[35:2]andEB_BE[3:0]signals on the rising
edge of clock 2. As in the single read cycle, these signals
remain active until the clock edge after theEB_ARdysignal
is sampled asserted. The 4KEm core continues to drive
EB_AValid as long as a valid address is on the bus.

TheEB_Instr signal is asserted if the burst read is for an
instruction fetch. TheEB_Burstsignal is asserted while the
address is on the bus to indicate that the current address is
part of a burst transaction. The 4KEm core asserts the
EB_BFirst signal in the same clock as the first address is
driven and theEB_BLastsignal in the same clock as the last
address to indicate the start and end of a burst cycle.

The 4KEm core first samples theEB_RData[31:0]signals
two clocks afterEB_ARDy is sampled asserted. External
logic assertsEB_RdValto indicate that valid data is on the
bus. The 4KEm core latches data internally whenever
EB_RdVal is sampled asserted.

Note that on the rising edge of clocks 3 and 6 inFigure 9,
theEB_RdVal signal is sampled deasserted, causing wait
states in the data return. There is also an address wait state
caused byEB_ARdybeing sampled deasserted on the rising
edge of clock 4. Note that the core holds address 3 on the
EB_A bus for an extra clock because of this wait state.
External logic asserts theEB_RBErr signal in the same
clock as data if a bus error occurs during that data transfer.

Burst Write

Burst write transactions are used to empty one of the write
buffers. A burst write transaction is only performed if the
write buffer contains 16 bytes of data associated with the
same aligned memory block, otherwise individual write
transactions are performed.Figure 10 shows a timing
diagram of a burst write transaction. Unlike the read burst,
a write burst always begins withEB_A[3:2] equal to 00b.

Figure 10 Burst Write Transaction Timing Diagram

The 4KEm core drives address and control information
onto theEB_A[35:2]andEB_BE[3:0]signals on the rising
edge of clock 2. As in the single read cycle, these signa
remain active until the clock edge after theEB_ARdysignal
is sampled asserted. The 4KEm core continues to drive
EB_AValid as long as a valid address is on the bus.

The 4KEm core asserts theEB_Write, EB_Burst, and
EB_AValid signals during the time the address is driven.
EB_Write indicates that a write operation is in progress.
The assertion ofEB_Burst indicates that the current
operation is a burst.EB_AValidindicates that valid address
is on the bus.

The 4KEm core asserts theEB_BFirst signal in the same
clock as address 1 is driven to indicate the start of a bur
cycle. In the clock that the last address is driven, the 4KE
core assertsEB_BLast to indicate the end of the burst
transaction.

In Figure 10, the first data word (Data1) is driven in clocks
2 and 3 due to theEB_WDRdy signal being sampled
deasserted at the rising edge of clock 2, causing a wait sta
WhenEB_WDRdyis sampled asserted on the rising edge o
clock 3, the 4KEm core responds by driving the second
word (Data2).

Table 13 Sub-Block Ordering Protocols

Starting Address
EB_A[3:2]

Address Progression
of EB_A[3:2]

00 00, 01, 10, 11

01 01, 00, 11, 10

10 10, 11, 00, 01

11 11, 10, 01, 00

EB_Clk

EB_A[35:2]

EB_AValid

EB_WData[31:0]

EB_WDRdy

EB_WBErr

EB_BFirst

EB_ARdy

Adr1 Adr2 Adr3 Adr4

EB_BE[3:0]

Write
Wait

Data1 Data2 Data3 Data4

EB_BLast

EB_Burst

Write
Wait

Clock # 1 2 3 4 5 6 7 8

EB_Write

Driven by
system logic
MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00 37

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

External logic drives theEB_WBErrsignal one clock after
the corresponding assertion ofEB_WDRdy if a bus error
has occurred as shown by the arrows inFigure 10.
38 MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00 39

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

Revision History

In the left hand page margins of this document you may
find vertical change bars to note the location of significant
changes to this document since its last release. Significant
changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar,
spelling errors or similar may or may not be noted with
change bars. Change bars will be removed for changes
which are more than one revision old.

 Please note: Limitations on the authoring tools make it
difficult to place change bars on changes to figures. Change
bars on figure titles are used to denote a potential change in
the figure itself. Certain parts of this document (Instruction
set descriptions, EJTAG register definitions) are references
to Architecture specifications, and the change bars within
these sections indicate alterations since the previous
version of the relevant Architecture document.

Revision Date Description

02.00 November 8, 2002
• Added this revision history table.
• Various updates to describe new MIPS32 Release 2 capabilities, included in version

3.0 or higher core releases.

Copyright ©2001-2002 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any
copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in
writing by MIPS Technologies or an authorized third party is strictly prohibited. At a minimum, this information is
protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all
confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE
FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS
WRITTEN PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function,
design or otherwise. MIPS Technologies does not assume any liability arising out of the application or use of this
information, or of any error or omission in such information. Any warranties, whether express, statutory, implied or
otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose,
are excluded. Except as expressly provided in any written license agreement from MIPS Technologies or an
authorized third party, the furnishing of this document does not give recipient any license to any intellectual property
rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported or transferred for the purpose of reexporting in
violation of any U.S. or non-U.S. regulation, treaty, Executive Order, law, statute, amendment or supplement thereto.

The information contained in this document constitutes one or more of the following: commercial computer
software, commercial computer software documentation or other commercial items. If the user of this information,
or any related documentation of any kind, including related technical data or manuals, is an agency, department, or
other entity of the United States government ("Government"), the use, duplication, reproduction, release,
modification, disclosure, or transfer of this information, or any related documentation of any kind, is restricted in
accordance with Federal Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition
Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions
covering this information from MIPS Technologies or an authorized third party.

MIPS, R3000, R4000, R5000 and R10000 are among the registered trademarks of MIPS Technologies, Inc. in the
United States and other countries, and MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-3D, MIPS-based, MIPS I,
MIPS II, MIPS III, MIPS IV, MIPS V, MIPSsim, SmartMIPS, MIPS Technologies logo, 4K, 4Kc, 4Km, 4Kp, 4KE,
4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 20Kc, 25Kf, ASMACRO, ATLAS, At the Core of the
User Experience., BusBridge, CoreFPGA, CoreLV, EC, JALGO, MALTA, MDMX, MGB, PDtrace, Pipeline, Pro,
Pro Series, SEAD, SEAD-2, SOC-it and YAMON are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

40 MIPS32™ 4KEm™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

Template: D1.06, Build with Conditional Tags: 2B

	Features
	Architecture Overview
	Pipeline Flow
	4KEm Core Required Logic Blocks
	Execution Unit
	Multiply/Divide Unit (MDU)
	System Control Coprocessor (CP0)
	Interrupt Handling
	GPR Shadow Registers

	Modes of Operation
	Memory Management Unit (MMU)
	Cache Controllers
	Bus Interface (BIU)
	Merge Control
	SimpleBE Mode

	Hardware Reset
	Power Management
	Register-Controlled Power Management
	Instruction-Controlled Power Management
	Local clock gating

	4KEm Core Optional Logic Blocks
	Instruction Cache
	Data Cache
	Cache Memory Configuration
	Cache Protocols
	Scratchpad RAM
	MIPS16e Application Specific Extension
	Coprocessor 2 Interface
	CorExtend User Defined Instruction Extensions
	EJTAG Debug Support
	Debug Registers
	EJTAG Hardware Breakpoints
	EJTAG Trace

	Testability
	Internal Scan
	Memory BIST
	Integrated Memory BIST
	User-specified Memory BIST

	Instruction Set
	External Interface Signals
	EC Interface Transactions
	Single Read
	Single Write
	Burst Read
	Burst Write

	Revision History

